Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из основных задач математической теории управления - задача о сближении фазового вектора управляемой системы с компактным целевым множеством в фазовом пространстве в фиксированный момент времени. В этой работе в качестве целевого множества выбрано множество Лебега скалярной липшицевой функции, определенной на фазовом пространстве. Упомянутая задача о сближении тесно связана с многими важными и ключевыми задачами теории управления, в частности с задачей об оптимальном по быстродействию приведении управляемой системы на целевое множество. Из-за сложности задачи о сближении для нетривиальных управляемых систем аналитическое представление решений невозможно даже для относительно простых управляемых систем. Поэтому в настоящей работе мы изучаем прежде всего вопросы, связанные с конструированием приближенного решения задачи о сближении. Конструирование приближенного решения тем методом, который изложен в работе, связано прежде всего с конструированием интегральной воронки управляемой системы, представленной в так называемом «обратном» времени. К настоящему времени известно несколько алгоритмов конструирования разрешающего программного управления в задаче о сближении. Здесь представлен алгоритм построения управления, основанный на максимальном притяжении движения системы к множеству разрешимости задачи о сближении. В работе приведены примеры.
-
В настоящей статье рассматривается краевая задача для дифференциальных уравнений типа Ланжевена с дробной производной Капуто в банаховом пространстве. Предполагается, что нелинейная часть уравнения представляет из себя отображение, подчиняющееся условиям типа Каратеодори. Уравнения такого типа обобщают уравнения движения в различного рода средах, например вязкоупругих, или в средах, где сила сопротивления выражается с помощью дробной производной. Для разрешения поставленной задачи будет использоваться теория дробного математического анализа, свойства функции Миттаг-Леффлера, а также теория мер некомпактности и уплотняющих операторов. Идея решения состоит в следующем: исходная задача сводится к задаче о существовании неподвижных точек соответствующего разрешающего интегрального оператора в пространстве непрерывных функций. Для доказательства существования неподвижных точек разрешающего оператора используется теорема типа Б.Н. Садовского о неподвижной точке. Для этого мы показываем, что разрешающий интегральный оператор является уплотняющим относительно векторной меры некомпактности в пространстве непрерывных функций и преобразует замкнутый шар в этом пространстве в себя.
-
О двух задачах преследования группы убегающих в дифференциальных играх с дробными производными, с. 65-79В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей группы убегающих, описываемая системой вида \begin{gather*} D^{(\alpha)}x_i = a_i x_i + u_i, \ u_i \in U_i, \quad D^{(\alpha)}y_j = b_jy_j + v, \ v\in V, \end{gather*} где $D^{(\alpha)}f$ — производная по Капуто порядка $\alpha$ функции $f$. Множества допустимых управлений $U_i, V$ — выпуклые компакты, $a_i, b_j$ — вещественные числа. Терминальные множества — выпуклые компакты. Получены достаточные условия разрешимости задач преследования. При исследовании в качестве базового используется метод разрешающих функций. Показано, что возможна такая конфликтная ситуация с равными возможностями всех участников, при которой один преследователь ловит всех убегающих.
-
Поимка двух скоординированных убегающих в линейной задаче преследования во временных шкалах, с. 397-409В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей двух убегающих, описываемая линейной системой с простой матрицей в заданной временно́й шкале. Предполагается, что убегающие используют одно и то же управление. Преследователи действуют согласно квазистратегиям на основе информации о начальных позициях и предыстории управления убегающих. Множество допустимых управлений для каждого из участников представляет собой шар единичного радиуса с центром в начале координат, терминальные множества — начало координат. Целью группы преследователей является поимка двух убегающих. При исследовании в качестве базового используется метод разрешающих функций, позволяющий получить достаточные условия разрешимости задачи сближения за некоторое гарантированное время. В терминах начальных позиций и параметров игры получено достаточное условие поимки убегающих.
-
Рассматривается задача оптимизации гарантированного результата для управляемой системы, описываемой обыкновенным дифференциальным уравнением, и функционала качества, непрерывно зависящего от траектории движения системы. Значения управления и помехи ограничены в каждый момент компактными множествами. Предполагается, что помеха порождается некоторой неизвестной заранее функцией типа Каратеодори, то есть функцией непрерывной по пространственной переменной при каждом значении временной переменной и измеримой по временной переменной при каждом значении пространственной. Оптимальное управление ищется в классе стратегий управления с полной памятью о движении системы и о реализовавшемся управлении.
Показано, что для достаточно широкого семейства управляемых систем оптимальный гарантированный результат в классе стратегий с полной памятью совпадает с оптимальным гарантированным результатом в классе квазистратегий. Для этого семейства управляемых систем построена разрешающая стратегия, допускающая численную реализацию. Приводится иллюстрирующий пример для нелинейной управляемой системы.
-
В данной работе изучаются игровые задачи преследования, описываемые системой уравнений с запаздывающим аргументом при интегральных ограничениях на управления игроков. В предлагаемой схеме используются идеи метода разрешающих функций. Предлагаются модификации методов (то есть первого и так называемого третьего методов) преследования в случае, когда на управления игроков наложены интегральные ограничения. Получены достаточные условия для возможности завершения преследования за конечное время.
-
В конечномерном евклидовом пространстве рассматривается задача преследования группой преследователей двух убегающих, описываемая системой вида $$ \dot z_{ij} = u_i - v,\quad u_i,v \in V. $$ Предполагается, что убегающие используют одно и то же управление. Преследователи используют контрстратегии на основе информации о начальных позициях и предыстории управления убегающих. Множество допустимых управлений $V$ — шар единичного радиуса с центром в начале координат, целевые множества — начало координат. Целью группы преследователей является поимка хотя бы одного убегающего двумя преследователями. В терминах начальных позиций и параметров игры получено достаточное условие поимки. При исследовании в качестве базового используется метод разрешающих функций, позволяющий получить достаточные условия разрешимости задачи сближения за некоторое гарантированное время.
-
В пространстве $\mathbb R^k$ $(k \geqslant 2)$ рассматривается нестационарная дифференциальная игра (обобщенный пример Л.С. Понтрягина) с $n$ преследователями и одним убегающим при одинаковых динамических и инерционных возможностях всех игроков, описываемая системой вида
$$Lz_{i}=z_{i}^{(l)}+a_{1}(t)z_{i}^{(l-1)}+ \dots +a_{l}(t)z_{i} =u_{i}-v, \quad u_{i},v\in V,$$
$$z_{i}^{(s)}(t_0) = z_{is}^0,\quad i=1,2, \ldots, n,\ s=0,1, \ldots, l-1.$$
Множество значений допустимых управлений игроков $V$ - строго выпуклый компакт с гладкой границей, $a_{1}(t),\dots, a_{l}(t)$ - непрерывные на $[t_0, \infty)$ функции, терминальные множества - начало координат. Преследователи используют квазистратегии. Предполагается, что функции $\xi_{i}(t)$, являющиеся решением задачи Коши
$$Lz_{i}=0,\quad z_{i}^{(s)}(t_0) = z_{is}^0,$$
являются рекуррентными. Приводятся свойства рекуррентных функций. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи преследования. Доказательство проводится с использованием метода разрешающих функций. Приведен пример, иллюстрирующий полученные условия.
-
В конечномерном евклидовом пространстве $\mathbb R^k$ рассматривается задача преследования группой преследователей одного убегающего с равными возможностями всех участников, описываемая в заданной временной шкале $T$ системой вида $$z_i^{\Delta} = u_i - v,$$ где $f^{\Delta}$ - $\Delta$-производная функции $f$ во временной шкале $T$. Множество допустимых управлений - шар радиусом единица с центром в начале координат. Терминальные множества - начало координат. Дополнительно предполагается, что убегающий в процессе игры не покидает пределы выпуклого многогранного множества с непустой внутренностью. Получены достаточные условия разрешимости задач преследования и уклонения. При исследовании в качестве базового используется метод разрешающих функций.
-
$\Pi$-стратегия для дифференциальной игры преследования с интегральными ограничениями обобщенного типа, с. 292-311В статье исследуется дифференциальная игра простого преследования, когда на управления двух противоборствующих игроков накладываются интегральные ограничения обобщенного типа. Обобщенность предлагаемого ограничения заключается в том, что оно включает в себя ранее известные ограничения, такие как интегральные, геометрические, линейные, экспоненциальные и их смешанности. В общем, оно включает в себя 25 типов задач преследования с такими разнотипными ограничениями. Для решения задачи преследования при таких обобщенных ограничениях предлагается стратегия параллельного преследования (сокращенно $\Pi$-стратегия) и находятся достаточные условия разрешимости этой задачи. В конце статьи предлагаются таблицы, где приводятся каждый частный тип игры, условия ее разрешимости, разрешающая функция (определяющая соответствующую $\Pi$-стратегию) и время поимки.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.