Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Статистические характеристики множества достижимости и периодические процессы управляемых систем, с. 34-43Изучаются статистические характеристики множества достижимости A(t,σ,X) управляемой системы
ẋ = f(ht,x,u), (t,σ,x,u) ∈ R × Σ × Rn × Rm, (1)
которая параметризована с помощью топологической динамической системы (Σ,ht). Получены оценки снизу таких характеристик, как относительная частота поглощения, верхняя и нижняя относительные частоты поглощения множества достижимости системы (1) заданным множеством M, а также достаточные условия статистической инвариантности множества M относительно управляемой системы. Исследуются условия, которым должна удовлетворять система (1) и множество X, чтобы для заданных σ ∈ Σ и χ0 ∈ (0, 1] относительная частота поглощения множества достижимости A(t,σ,X) системы (1) множеством M была не менее χ0. Результаты работы иллюстрируются на примере управляемой системы, которая описывает периодические процессы в химическом реакторе.
-
Изучаются статистические характеристики множества достижимости управляемой системы, которая параметризована с помощью топологической динамической системы. Получены оценки снизу характеристик, связанных с инвариантностью заданного множества на конечном промежутке времени. Рассматривается также следующая задача, возникающая во многих приложениях. Пусть заданы числа λ0 ∈ (0, 1] и θ > 0. Необходимо найти условия, которым должны удовлетворять управляемая система и множество X, чтобы для заданного σ ∈ Σ относительная частота поглощения множества достижимости A(t,σ,X) системы заданным множеством M на любом отрезке времени длины θ была бы не менее λ0. Отметим, что характеристика θ предполагается заданной в зависимости от прикладной задачи. В частности, если управляемый процесс имеет периодический характер, то θ является периодом данного процесса. Результаты работы иллюстрируются на примерах управляемых систем, которые описывают различные модели роста популяции.
-
Изучаются условия существования рекуррентных и почти периодических решений неавтономного дифференциального включения с параметром, меняющемся в компактном метрическом пространстве. Приводятся соответствующие следствия для обыкновенных дифференциальных включений.
-
Для пространства линейных управляемых систем, параметризованных с помощью топологической динамической системы, построены для каждого инвариантного (относительно потока в фазовом пространстве динамической системы) пространства расширение и отвечающее ему перроновское преобразование, приводящее заданное семейство систем к так называемой канонической системе. Доказано также, что на минимальных инвариантных пространствах перроновское преобразование обладает свойством рекуррентности.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.