Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'фундаментальное решение':
Найдено статей: 10
  1. Работа посвящена исследованию свойства интегральной разделенности линейных систем с дискретным временем. Согласно определению система $x(m+1)=A(m)x(m),$ $m\in\mathbb N,$ $x\in\mathbb R^n,$ называется системой с интегральной разделенностью, если она имеет фундаментальную систему решений $x^1(\cdot),\ldots,x^n(\cdot)$ такую, что при некоторых $\gamma>0$, $a>1$ и всех натуральных $m>s$, $i\leqslant n-1$ выполнены неравенства $$ \dfrac{\|x^{i+1}(m)\|}{\|x^{i+1}(s)\|}\geqslant\gamma a^{m-s}\dfrac{\|x^{i}(m)\|}{\|x^{i}(s)\|}. $$ Понятие интегральной разделенности систем с непрерывным временем было введено Б.Ф. Быловым в 1965 году. Доказаны критерии интегральной разделенности систем с дискретным временем: приводимость к диагональному виду с интегрально разделенной диагональю; устойчивость и некратность показателей Ляпунова. Подробно исследовано также свойство диагонализируемости систем с дискретным временем. Доказательства учитывают специфику этих систем.

  2. Рассматриваются вопросы разрешимости краевых задач для линейных функционально-дифференциальных уравнений. Предлагаются утверждения, позволяющие получать условия существования единственного решения, неотрицательности функции Грина и фундаментального решения однородного уравнения. Для применения этих утверждений требуется задать «эталонную» краевую задачу, обладающую соответствующими свойствами, и определить некоторый оператор по приведенному правилу через операторы, порожденные исследуемой и «эталонной» задачами. Если спектральный радиус этого оператора меньше 1, то рассматриваемая краевая задача однозначно разрешима. Аналогично: для получения условий неотрицательности функции Грина и фундаментального решения требуется определить по приведенному в работе правилу специальный оператор и проверить его положительность. Рассмотрен пример применения полученных утверждений к конкретной краевой задаче с интегральным краевым условием для уравнения, содержащего отклонения в аргументе неизвестной функции и ее производной.

  3. В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с непрерывным и дискретным временем и дискретной памятью. В рамках этого класса предлагается явное представление для основных составляющих представления общего решенияфундаментальной матрицы и оператора Коши. Полученные представления даются в терминах параметров рассматриваемой системы и открывают возможность эффективного исследования общих краевых задач и задач управления относительно заданной конечной системы линейных целевых функционалов. При исследовании упомянутых задач для систем за пределами изучаемого класса рассматриваемые в работе системы с дискретной памятью могут играть роль модельных или аппроксимирующих систем и оказаться полезными при изучении грубых свойств систем с последействием, сохраняющихся при малых возмущениях параметров.

  4. Выведена формула, связывающая фундаментальное решение и матрицу Коши линейного автономного скалярного уравнения нейтрального типа.

  5. В статье выполнен теоретический анализ основополагающих уравнений, выражающих фундаментальные законы сохранения в континуальном и дисконтинуальных приближениях, и методов решения задач гидродинамики как одного из важнейших подразделов механики сплошных сред. Данная работа является попыткой более точно описать физико-химические макропроцессы. Показано, что для компьютерного моделирования больше всего подходят уравнения, которые выражают законы сохранения при естественных ограничениях на минимальные пространственный и временной масштабы, то есть уравнения без частных производных и ограничений на гладкость решений. На примере уравнений неразрывности и теплопроводности, приведен феноменологический способ построения и численного решения основополагающих уравнений, и сравнение с традиционным подходом.

  6. В настоящей работе исследуются различные разновидности частот Сергеева и показателей колеблемости решений линейных однородных дифференциальных уравнений с непрерывными ограниченными коэффициентами. Для любого наперед заданного натурального числа $N$ конструктивно в работе построено периодическое линейное дифференциальное уравнение третьего порядка, обладающее тем свойством, что его спектры верхних и нижних частот Сергеева строгих знаков, нулей и корней, а также спектры всех верхних и нижних сильных и слабых показателей колеблемости строгих и нестрогих знаков, нулей, корней и гиперкорней содержат один и тот же набор, состоящий из $N$ различных существенных значений, причем как метрически, так и топологически. Более того, все эти значения реализованы на одном и том же наборе решений построенного уравнения, то есть для каждого решения из этого набора все перечисленные выше частоты и показатели колеблемости совпадают между собой. При построении указанного уравнения и доказательстве требуемых результатов использованы аналитические методы качественной теории дифференциальных уравнений, в частности, методы теории возмущений решений линейных дифференциальных уравнений, а также авторская методика управления фундаментальной системой решений таких уравнений в одном частном случае.

  7. Вольфенгаген В.Э., Исмаилова Л.Ю., Косиков С.В., Лаптев А.Д., Назаров В.Н., Рословцев В.В., Сафаров И.С., Степанов А.Л.
    Аппликативный компьютинг: попытки установить природу вычислений, с. 118-131

    В настоящей работе отражены результаты, полученные при выполнении проектов 93-01-00943-а\break (ЛАМБДА), 96-01-01923-а (КООАМ), 05-01-00736-а, 06-07-99005-с, 05-07-90236-в, 07-07-00298-а, 07-07-00355-а, 07-07-12098-офи, поддержанных грантами РФФИ. Если на ранних стадиях программирование представляло собой вид искусства, когда программист писал программу для решения определенной задачи и сопровождал ее более или менее подробно составленной документацией, то теперь создана мощная индустрия программирования с сопутствующей ей инженерией программирования. В настоящее время в исследованиях по программированию или в сфере компьютерных наук, как правило, поддерживаются работы, в которых вносится некоторое небольшое улучшение в решение уже хорошо известной проблемы. Вместе с тем из виду упускаются действительно важные и фундаментальные исследования, ведущие к поиску новых концепций вычислений на компьютере и недостаточное внимание уделяется накоплению знаний в области программирования.
    В настоящей работе основное внимание уделено вычислениям с объектами, удельный вес и роль которых в данной области все более возрастает, превращаясь в доминирующую тенденцию.

  8. Рассматривается решение дифференциальной игры сближения-уклонения с использованием метода программных итераций. Основная цель состоит в построении множества позиционного поглощения, соответствующего разбиению пространства позиций игры, отвечающему фундаментальной теореме об альтернативе Н.Н. Красовского, А.И. Субботина. Для построения используется оператор программного поглощения, определяемый целевым множеством в задаче о сближении. Множество, формирующее фазовые ограничения, поэтапно преобразуется упомянутым оператором, реализуя последовательность, предел которой совпадает с множеством позиционного поглощения. Предполагается, что целевое множество замкнуто, а множество, определяющее фазовые ограничения исходной задачи, имеет замкнутые сечения, каждое из которых соответствует фиксации момента времени. Установлены свойства, имеющие смысл односторонней непрерывности множества позиционного поглощения при изменении множеств, определяющих исходную дифференциальную игру. Показано, что предел итерационной процедуры совпадает с множеством успешной разрешимости в классе многозначных обобщенных квазистратегий.

  9. Рассматривается задача об оптимальном управлении по быстродействию. Обсуждаются достаточные условия локальной оптимальности, связанные с необходимыми условиями принципа максимума Понтрягина при условии полной управляемости системы в вариациях. Задача обсуждается для системы, описываемой векторным дифференциальным уравнением, обыкновенным или с последействием. В случае конфликтного управления обсуждается задача оптимального управления по критерию минимакса-максимина времени выхода системы в заданное состояние. Рассматривается модельный пример и обсуждается соответствующий вычислительный эксперимент.

  10. Получены критерии существования экспоненциальных оценок фундаментальной матрицы и матрицы Коши автономного функционально-дифференциального уравнения нейтрального типа.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref