Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'Fourier method':
Найдено статей: 15
  1. Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.

    The paper is concerned with the problem of absolute continuity of the spectrum of the two-dimensional generalized periodic Schrodinger operator $H_g+V=-\nabla g\nabla+V$ where the continuous positive function $g$ and the scalar potential $V$ have a common period lattice $\Lambda$. The solutions of the equation $(H_g+V)\varphi=0$ determine, in particular, the electric field and the magnetic field of electromagnetic waves propagating in two-dimensional photonic crystals. The function $g$ and the scalar potential $V$ are expressed in terms of the electric permittivity $\varepsilon$ and the magnetic permeability $\mu$ ($V$ also depends on the frequency of the electromagnetic wave). The electric permittivity $\varepsilon$ may be a discontinuous function (and usually it is chosen to be piecewise constant) so the problem to relax the known smoothness conditions on the function $g$ that provide absolute continuity of the spectrum of the operator $H_g+V$ arises. In the present paper we assume that the Fourier coefficients of the functions $g^{\pm\frac12}$ for some $q\in[1, \frac43)$ satisfy the condition $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$, and the scalar potential $V$ has relative bound zero with respect to the operator $-\Delta$ in the sense of quadratic forms. Let $K$ be the fundamental domain of the lattice $\Lambda$, and assume that $K^*$ is the fundamental domain of the reciprocal lattice $\Lambda^*$. The operator $H_g+V$ is unitarily equivalent to the direct integral of operators $H_g(k)+V$, with quasimomenta $k\in 2\pi K^*$, acting on the space $L^2(K)$. The last operators can be also considered for complex vectors $k+ik'\in \mathbb{C}^2$. We use the Thomas method. The proof of absolute continuity of the spectrum of the operator $H_g+V$ amounts to showing that the operators $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, are invertible for some appropriately chosen complex vectors $k+ik'\in \mathbb{C}^2$ (depending on $g$, $V$, and the number $\lambda$) with sufficiently large imaginary parts $k'$.

  2. В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.

    This work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.

  3. В данной статье изучена задача Келдыша для трехмерного уравнения смешанного типа с тремя сингулярными коэффициентами в полубесконечном параллелепипеде. На основании свойства полноты систем собственных функций двух одномерных спектральных задач доказана теорема единственности. Для доказательства существования решения задачи использован спектральный метод Фурье, основанный на разделении переменных. Решение поставленной задачи построено в виде суммы двойного ряда Фурье-Бесселя. При обосновании равномерной сходимости построенного ряда использованы асимптотические оценки функций Бесселя действительного и мнимого аргумента. На их основе получены оценки для каждого члена ряда, позволившие доказать сходимость ряда и его производных до второго порядка включительно, а также теорему существования в классе регулярных решений.

    This article studies the Keldysh problem for a three-dimensional equation of mixed type with three singular coefficients in a semi-infinite parallelepiped. Based on the completeness property of eigenfunction systems of two one-dimensional spectral problems, the uniqueness theorem is proved. To prove the existence of a solution to the problem, the Fourier spectral method based on the separation of variables is used. The solution to this problem is constructed in the form of a sum of a double Fourier-Bessel series. In substantiating the uniform convergence of the constructed series, we used asymptotic estimates of the Bessel functions of the real and imaginary argument. Based on them, estimates were obtained for each member of the series, which made it possible to prove the convergence of the series and its derivatives to the second order inclusive, as well as the existence theorem in the class of regular solutions

  4. В работе исследована одна обратная краевая задача для эллиптического уравнения второго порядка с дополнительным интегральным условием первого рода. Для рассматриваемой обратной краевой задачи вводится определение классического решения. С помощью метода Фурье задача сводится к решению системы интегральных уравнений. С помощью метода сжатых отображений доказывается существование и единственность решения системы интегральных уравнений. Далее доказывается существование и единственность классического решения исходной задачи.

    An inverse boundary value problem for the second order elliptic equation with an additional integral condition of the first kind is investigated. We introduce the definition of a classical solution for the considered inverse boundary value problem reduced to solving of the system of integral equations by the use of the Fourier method. First, the existence and uniqueness of solutions of the system of integral equations are proved by using the method of contraction mappings; and then the existence and uniqueness of classical solutions of the original problem are proved.

  5. Рассматривается периодический оператор Шредингера ĤA+V в Rn, n≥3. На векторный потенциал A накладываются ограничения, которые, в частности, выполнены, если потенциал A принадлежит классу Соболева Hqloc(Rn;Rn), 2q>n-1, а также в случае, когда Σ ||AN||Cn<+∞, где AN – коэффициенты Фурье потенциала A. Доказана абсолютная непрерывность спектра периодического оператора Шредингера ĤA+V для скалярных потенциалов V из пространства Морри L2,p(Rn), p∈((n-1)/2,n/2], для которых ||ΧBr(x)V||2,pε0 при всех достаточно малых r>0 и всех xRn, где число ε0=ε0(n,p;A)>0 зависит от векторного потенциала A, Br(x) – замкнутый шар радиуса r>0 с центром в точке xRn, ΧΚ – характеристическая функция множества KRn, ||.||2,p
    норма в пространстве L2,p(Rn). Пусть K – элементарная ячейка решетки периодов потенциалов A и V, K* – элементарная ячейка обратной решетки. Оператор ĤA+V  унитарно эквивалентен прямому интегралу операторов ĤA(k)+V, k∈2πK*, действующих в L2(K). Последние операторы рассматриваются также при комплексных векторах k+ik’∈Cn. При доказательстве абсолютной непрерывности спектра оператора ĤA+V используется метод Томаса и оценки резольвенты операторов ĤA(k+ik’)+V при определенным образом выбираемых комплексных векторах k+ik’∈Cn с достаточно большой мнимой частью k’.

    We consider the periodic Schrödinger operator ĤA+V in Rn, n≥3. The vector potential A is supposed to satisfy some conditions which are fullled whenever the potential A belongs to the Sobolev class Hqloc(Rn;Rn), 2q>n-1, and also in the case where Σ ||AN||Cn<+∞. Here AN are the Fourier coecients of the potentialA. We prove absolute continuity of the spectrum of the periodic Schrödinger operator ĤA+V provided that the scalar potential V belongs to the Morrey space L2,p(Rn), p∈((n-1)/2,n/2] and ||ΧBr(x)V||2,pε0 for all suciently small r>0 and all xRn, where the number ε0=ε0(n,p;A)>0 depends on the vector potential A, Br(x) is a closed ball of radius r>0 centered at the point xRn, ΧΚ a characteristic function of a set KRn, ||.||2,p the norm in the space L2,p(Rn). Let K be the fundamental domain of the period lattice (which is common for the potentials A and V), K the fundamental domain of the reciprocal lattice. The operator ĤA+V is unitarily equivalent to the direct integral of operators ĤA(k)+V, k∈2πK*, acting on the space L2(K). The last operators are also considered for complex vectors k+ik’∈Cn. To prove absolute continuity of the spectrum of the operator ĤA+V, we use the Thomas method. The main ingredients in the proof are the inequalities for the resolvent of the operators ĤA(k+ik’)+V which hold for some appropriate chosen complex vectors k+ik’∈Cn with suciently large imaginary part k’.

  6. В настоящей работе сформулирована, поставлена и решена обратная граничная задача теплопроводности, при условии, что коэффициент теплопроводности является кусочно-постоянным. Эта задача занимает важное место в технике, так как теплонагруженные узлы технических конструкций покрывают теплоизолирующим слоем, термические характеристики которого сильно отличаются от термических характеристик самой конструкции. Подобные задачи находят свое применение при планировании стендовых испытаний летательных аппаратов. Современные композитные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ. В ракетных двигателях внутреннюю стенку камеры внутреннего сгорания покрывают теплозащитным слоем, который изготавливают из композитных материалов. Благодаря свойствам этих материалов теплозащитный слой значительно снижает температуру стенки внутреннего сгорания. При решении обратной граничной задачи необходимо учитывать разницу коэффициентов теплопроводности составных частей композитных материалов, из которых изготавливают стенку камеры. Задача исследовалась с помощью ряда Фурье по собственным функциям для уравнения с разрывным коэффициентом. Доказано, что для решения обратной задачи применимо преобразование Фурье по переменной времени. Для решения обратной задачи использовано преобразование Фурье, позволяющее свести обратную задачу к операторному уравнению, которое было решено методом невязки.

    In the present paper, an inverse boundary value problem of thermal conduction is formulated, posed and solved, provided that the thermal diffusivity is piecewise constant. This task holds a prominent place in technology, since thermally loaded units of technical constructions are covered with a heat insulating layer, the thermal characteristics of which are very different from the thermal characteristics of the structure itself. Such tasks are used in the planning of bench tests of aircraft. Modern composite materials solve this problem, giving developers a number of advantages. In rocket engines, the inner wall of the internal combustion chamber is covered with a heat-shielding layer, which is made of composite materials. Due to the properties of these materials, the heat-shielding layer significantly reduces the temperature of the internal combustion wall. When solving an inverse boundary problem, it is necessary to take into account the difference in the thermal conductivity coefficients of the component parts of composite materials, which make the wall of the chamber. The problem was investigated using a Fourier series in eigenfunctions for an equation with a discontinuous coefficient. It is proved that for the solution of the inverse problem the Fourier transform with respect to $t$ is applicable. To solve the inverse problem, the Fourier transform was used, which made it possible to reduce the inverse problem to the operator equation, which was solved by the discrepancy method.

  7. Для приведенной канонической системы интегро-дифференциальных уравнений вязкоупругости рассмотрены прямая и обратная задачи определения поля скоростей упругих волн и матрицы релаксации. Задачи заменены замкнутой системой интегральных уравнений типа Вольтерра второго рода относительно преобразования Фурье по переменным $x_{1}$ и $x_{2}$ для решения прямой и обратной задачи. Далее к этой системе применяется метод сжимающих отображений в пространстве непрерывных функций с весовой нормой. В работе доказаны теоремы о глобальные существования и единственности решений задач.

    For the reduced canonical system of integro-differential equations of viscoelasticity, direct and inverse problems of determining the velocity field of elastic waves and the relaxation matrix are considered. The problems are replaced by a closed system of Volterra integral equations of the second kind with respect to the Fourier transform in the variables $x_{1}$ and $x_{2}$ for the solution of the direct problem and unknowns of the inverse problem. Further, the method of contraction mappings in the space of continuous functions with a weighted norm is applied to this system. Thus, we prove global existence and uniqueness theorems for solutions of the problems.

  8. Иманбетова А.Б., Сарсенби А.А., Сейлбеков Б.Н.
    Обратные задачи для уравнения колебания балки с инволюцией, с. 452-466

    В этой статье рассматриваются обратные задачи для уравнения гиперболического вида четвертого порядка с инволюцией. Существование и единственность решения изучаемых обратных задач устанавливается методом разделения переменных. Для применения метода разделения переменных доказываем базисность Рисса собственных функций дифференциального оператора четвертого порядка с инволюцией в пространстве ${{L}_{2}}(-1,1)$. При доказательстве теорем о существовании и единственности решения широко используем неравенство Бесселя для коэффициентов разложений в ряд Фурье в пространстве ${{L}_{2}}(-1,1)$. Показана существенная зависимость существования решения от коэффициента уравнения $\alpha$. В каждом из случаев $\alpha <-1$, $\alpha >1$, $-1<\alpha <1$ выписаны представления решений в виде рядов Фурье по собственным функциям краевых задач для уравнения четвертого порядка с инволюцией.

    Imanbetova A.B., Sarsenbi A.A., Seilbekov B.
    Inverse problems for the beam vibration equation with involution, pp. 452-466

    This article considers inverse problems for a fourth-order hyperbolic equation with involution. The existence and uniqueness of a solution of the studied inverse problems is established by the method of separation of variables. To apply the method of separation of variables, we prove the Riesz basis property of the eigenfunctions for a fourth-order differential operator with involution in the space ${{L}_{2}}(-1,1)$. For proving theorems on the existence and uniqueness of a solution, we widely use the Bessel inequality for the coefficients of expansions into a Fourier series in the space ${{L}_{2}}(-1,1)$. A significant dependence of the existence of a solution on the equation coefficient $\alpha$ is shown. In each of the cases $\alpha <-1$, $\alpha >1$, $-1<\alpha<1$ representations of solutions in the form of Fourier series in terms of eigenfunctions of boundary value problems for a fourth-order equation with involution are written out.

  9. В данной статье для одного дифференциального уравнения в частных производных высокого четного порядка с оператором Бесселя в прямоугольной области сформулированы две нелокальные начально-граничные задачи. Исследована корректность одной из поставленных задач. При этом применением метода разделения переменных к изучаемой задаче получена спектральная задача для обыкновенного дифференциального уравнения высокого четного порядка. Доказана самосопряженность последней задачи, откуда следует существование системы ее собственных функций, а также ортонормированность и полнота этой системы. Далее, построена функция Грина спектральной задачи, с помощью чего она эквивалентно сведена к интегральному уравнению Фредгольма второго рода с симметричным ядром. С помощью этого интегрального уравнения и теоремы Мерсера исследована равномерная сходимость некоторых билинейных рядов, зависящих от найденных собственных функций. Установлен порядок коэффициентов Фурье. Решение изучаемой задачи выписано в виде суммы ряда Фурье по системе собственных функций спектральной задачи. Доказана равномерная сходимость этого ряда, а также рядов, полученных из него почленным дифференцированием. Методом спектрального анализа доказана единственность решения задачи. Получена оценка для решения задачи, откуда следует его непрерывная зависимость от заданных функций.

    In the present paper, two non-local initial-boundary value problems have been formulated for a partial differential equation of high even order with a Bessel operator in a rectangular domain. The correctness of one of the considered problems has been investigated. To do this, applying the method of separation of variables to the problem under consideration, the spectral problem was obtained for an ordinary differential equation of high even order. The self-adjointness of the last problem was proved, which implies the existence of the system of its eigenfunctions, as well as orthonormality and completeness of this system. Further, the Green's function of the spectral problem was constructed, with the help of which it was equivalently reduced to the Fredholm integral equation of the second kind with symmetrical kernel. Using this integral equation and Mercer's theorem, the uniform convergence of some bilinear series depending on found eigenfunctions has been studied. The order of the Fourier coefficients was established. The solution of the considered problem has been written as the sum of a Fourier series with respect to the system of eigenfunctions of the spectral problem. The uniform convergence of this series and also the series obtained from it by term-by-term differentiation was proved. Using the method of spectral analysis, the uniqueness of the solution of the problem was proved. An estimate for the solution of the problem was obtained, from which its continuous dependence on the given functions follows.

  10. В данной работе исследуется обратная задача для одномерного интегро-дифференциального уравнения теплопроводности с нелокальными начально-краевыми и интегральными условиями переопределения. Мы использовали метод Фурье и принцип Шаудера для исследования разрешимости прямой задачи. Далее задача сводится к эквивалентной замкнутой системе интегральных уравнений относительно неизвестных функций. Существование и единственность решения интегральных уравнений доказывается с помощью сжимающего отображения. Наконец, с помощью эквивалентности получается существование и единственность классического решения.

    In this paper, an inverse problem for a one-dimensional integro-differential heat equation is investigated with nonlocal initial-boundary and integral overdetermination conditions. We use the Fourier method and the Schauder principle to investigate the solvability of the direct problem. Further, the problem is reduced to an equivalent closed system of integral equations with respect to unknown functions. Existence and uniqueness of the solution of the integral equations are proved using a contractive mapping. Finally, using the equivalency, the existence and uniqueness of the classical solution is obtained.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref