Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена методу решения стационарных задач фильтрации несжимаемой жидкости, следующей нелинейному анизотропному многозначному закону фильтрации с предельным градиентом. Задача фильтрации сформулирована в виде вариационного неравенства второго рода с обратно сильно монотонным оператором в гильбертовом пространстве. Функционал, входящий в это вариационное неравенство, является суммой нескольких полунепрерывных снизу выпуклых собственных функционалов. Для решения вариационного неравенства предлагается использовать итерационный метод расщепления.
теория фильтрации, математическое моделирование, вариационные неравенства, обратно сильно монотонный оператор, итерационный методThe paper is devoted to a method of solving of stationary filtration problems of non-compressible fluid which follows the nonlinear multi-valued anisotropic law of filtration with limiting gradient. This problem mathematically is formulated in the form of variational inequality of the second kind in Hilbert space with inversely strongly monotone operator. The functional occurring in this variational inequality is a sum of several lower semi-continuous convex proper functionals. For solving the considered variational inequality the splitting method is offered.
-
Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.
краевая задача, априорная оценка, регулярная разрешимость, интегральное уравнение Фредгольма второго рода, резольвента, метод последовательных приближений
A boundary value problem for a fourth order partial differential equation with the lowest term, pp. 3-10In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.
-
Новизна в том, что лицо, принимающее решение (ЛПР) в многокритериальной задаче при неопределенности, стремится не только по возможности увеличить гарантированные значения каждого из своих критериев, но и одновременно уменьшить гарантированные риски, сопровождающие такое увеличение. Предлагаемое исследование выполнено на стыке теории многокритериальных задач (МЗ) и принципа минимаксного сожаления (риска) (ПМС) Сэвиджа-Ниханса: из теории МЗ использованы понятие слабо эффективной оценки и сопровождающая теорема Ю.Б. Гермейера, а из ПМС - оценка значения функции сожаления в качестве риска по Сэвиджу-Нихансу. Рассмотрение ограничено интервальными неопределенностями: о них ЛПР известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют (по тем или иным причинам). Введено новое понятие - сильно гарантированного по исходам и рискам решения (СГИР), максимального по Слейтеру; установлено его существование при «привычных» для математического программирования ограничениях (непрерывность критериев, компактность множеств стратегий и неопределенностей). В качестве приложения найден явный вид СГИР в задаче диверсификации вклада по рублевому и валютному депозитам.
многокритериальные задачи, сильная гарантия, максимум по Слейтеру и Парето, минимаксное сожаление, диверсификация вкладовThe applicability and novelty of this research lies in that the decision-maker in a multicriteria problem aims not only to maximize guaranteed values of each criterion, but also to minimize the guaranteed risks accompanying the said maximization. The topic of the research lies at the interface of the multicriteria problem theory and the Savage-Niehans minimax regret principle: the concept of a weakly effective estimate has been derived from the MP theory, while estimation of risks with values of the Savage-Niehans regret function has been derived from the minimax regret principle. The scope of this research is limited to interval uncertainties: the decision-maker only knows the limits of the interval, and probabilistic characteristics are missing. A new term is introduced, namely, “strongly guaranteed solution under outcomes and risks”; its existence for “regular”-confined-strategies for the mathematical programming is established. As an example of a practical application, the problem of diversification of a multi-currency deposit is suggested and solved.
-
Рассмотрено применение барицентрического метода для численного решения задач Дирихле и Неймана для уравнения Гельмгольца в ограниченной односвязной области $\Omega\subset\mathbb{R}^2$. Основное допущение в решении заключается в задании границы $\Omega$ в кусочно-линейном представлении. Отличительная особенность барицентрического метода состоит в порядке формирования глобальной системы векторных базисных функций для $\Omega$ через барицентрические координаты. Установлены существование и единственность решения задач Дирихле и Неймана для уравнения Гельмгольца барицентрическим методом и определена оценка скорости сходимости. Уточнены особенности алгоритмической реализации метода.
внутренние задачи Дирихле и Неймана, уравнение Гельмгольца, многоугольник произвольной формы, барицентрический метод, метод Галёркина, барицентрические координаты, оценка сходимостиThe application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linear representation. A distinctive feature of the barycentric method is the order of formation of a global system of vector basis functions for $\Omega$ via barycentric coordinates. The existence and uniqueness of the solution of Dirichlet and Neumann problems for the Helmholtz equation by the barycentric method are established and the convergence rate estimate is determined. The features of the algorithmic implementation of the method are clarified.
-
Рассматривается задача с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в прямоугольной области. Исследуются вопросы существования и единственности классического решения рассматриваемой задачи, а также непрерывной зависимости решения от исходных данных. Предлагается новый подход к решению задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка на основе введения новых функций. Путем введения новых неизвестных функций задача сводится к эквивалентному семейству задач Коши для нагруженной системы дифференциальных уравнений с параметрами и интегральным соотношениям. Предложен алгоритм нахождения приближенного решения эквивалентной задачи и доказана его сходимость. Установлены условия однозначной разрешимости задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в терминах коэффициентов системы.
нагруженные системы гиперболических уравнений, задача с данными на характеристиках, семейства задач Коши, алгоритм, критерий разрешимостиWe consider a problem with data on the characteristics for a loaded system of hyperbolic equations of the second order on a rectangular domain. The questions of the existence and uniqueness of the classical solution of the considered problem, as well as the continuity dependence of the solution on the initial data, are investigated. We propose a new approach to solving the problem with data on the characteristics for the loaded system of hyperbolic equations second order based on the introduction new functions. By introducing new unknown functions the problem is reduced to an equivalent family of Cauchy problems for a loaded system of differential with a parameters and integral relations. An algorithm for finding an approximate solution to the equivalent problem is proposed and its convergence is proved. Conditions for the unique solvability of the problem with data on the characteristics for the loaded system of hyperbolic equations of the second order are established in the terms of coefficient's system.
-
Классическим свойством периодической функции на вещественной оси является возможность ее представления тригонометрическим рядом Фурье. Естественным аналогом условия периодичности в евклидовом пространстве $\mathbb{R}^m$ является постоянство интегралов от функции по всем шарам (или сферам) фиксированного радиуса. Функции с указанным свойством можно разложить в ряд Фурье по сферическим гармоникам, коэффициенты которого разлагаются в ряды по функциям Бесселя. Этот факт допускает обобщение на векторные поля в $\mathbb{R}^m$, имеющие нулевой поток через сферы фиксированного радиуса. В данной работе изучаются векторные поля с нулевым потоком через окружности фиксированного радиуса на плоскости Лобачевского $\mathbb{H}^2$. Получено описание таких полей в виде рядов по гипергеометрическим функциям. Результаты, полученные в работе, можно использовать при решении задач, связанных с гармоническим анализом векторных полей на областях в $\mathbb{H}^2$.
A classic property of a periodic function on the real axis is the possibility of its representation by a trigonometric Fourier series. The natural analogue of the periodicity condition in Euclidean space $\mathbb{R}^m$ is the constancy of integrals of a function over all balls (or spheres) of fixed radius. Functions with the indicated property can be expanded in a Fourier series in terms of spherical harmonics whose coefficients are expanded into series in Bessel functions. This fact can be generalized to vector fields in $\mathbb{R}^m$ with zero flux through spheres of fixed radius. In this paper we study vector fields which have zero flux through every circle of fixed radius on the Lobachevskii plane $\mathbb{H}^2$. A description of such fields in the form of series in terms of hypergeometric functions is obtained. These results can be used to solve problems concerning harmonic analysis of vector fields on domains in $\mathbb{H}^2$.
-
Интегрирование системы Каупа–Буссинеска с самосогласованным источником с помощью метода обратного рассеяния, с. 153-170В данной работе рассматривается система Каупа–Буссинеска с самосогласованным источником. Показано, что система Каупа–Буссинеска с самосогласованным источником может быть проинтегрирована методом обратной задачи рассеяния. Для решения рассматриваемой задачи используются прямая и обратная задачи рассеяния уравнения Штурма–Лиувилля с потенциалом, зависящим от энергии. Определена временная эволюция данных рассеяния для уравнения Штурма–Лиувилля с энергозависимыми потенциалами, связанными с решением системы Каупа–Буссинеска с самосогласованным источником. Полученные равенства полностью определяют данные рассеяния при любом $t$, что позволяет применить метод обратной задачи рассеяния для решения задачи Коши для системы Каупа–Буссинеска с самосогласованным источником.
нелинейное уравнение солитона, система Каупа–Буссинеска, самосогласованный источник, метод обратного рассеяния, квадратичный пучок уравнений Штурма–Лиувилля
Integration of the Kaup–Boussinesq system with a self-consistent source via inverse scattering method, pp. 153-170In this study we consider the Kaup–Boussinesq system with a self-consistent source. We show that the Kaup–Boussinesq system with a self-consistent source can be integrated by the method of inverse scattering theory. For a solving the problem under consideration, we use the direct and inverse scattering problem of the Sturm–Liouville equation with an energy-dependent potential. The time evolution of the scattering data for the Sturm–Liouville equation with an energy-dependent potentials associated with the solution of the Kaup–Boussinesq system with a self-consistent source is determined. The obtained equalities completely determine the scattering data for any $t$, which makes it possible to apply the method of the inverse scattering problem to solve the Cauchy problem for the Kaup–Boussinesq system with a self-consistent source.
-
Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами решениями однородных, автономных линейных разностных или дифференциальных уравнений.
линейные автономные дифференциальные и разностные уравнения, ортогональное проектирование, сглаживание, фильтрация, прогнозирование, процесс обновления, быстрые рекуррентные алгоритмы.
On one variational smoothing problem, pp. 9-22We study the variational approach to setting and solving of the function approximating problem by quasipolynomials which are the solutions of the homogeneous autonomous linear difference or differential equations.
-
В данной работе предлагается новый метод классификации метрических функций феноменологически симметричных геометрий двух множеств. Он называется методом вложения, суть которого состоит в нахождении метрических функций феноменологически симметричных геометрий двух множеств высокого ранга по известной феноменологически симметричной геометрии двух множеств ранга на единицу ниже. Так по ранее известной метрической функции феноменологически симметричной геометрии двух множеств ранга $(2,2)$ находится метрическая функция феноменологически симметричной геометрии двух множеств ранга $(3,2)$, по феноменологически симметричной геометрии двух множеств ранга $(3,2)$ находится феноменологически симметричной геометрии двух множеств ранга $(4,2)$. Затем доказывается, что вложение феноменологически симметричной геометрии двух множеств $(4,2)$ в феноменологически симметричной геометрии двух множеств ранга $(5,2)$ отсутствует. Для решения поставленной задачи составляются специальные функциональные уравнения, которые сводятся к хорошо известным дифференциальным уравнениям.
феноменологически симметричная геометрия двух множеств, метрическая функция, дифференциальное уравнениеIn this paper, we propose a new method of classification of metric functions of phenomenologically symmetric geometries of two sets. It is called the method of embedding, the essence of which is to find the metric functions of phenomenologically symmetric geometries of two high-rank sets for the given phenomenologically symmetric geometry of two sets having rank less by $1$. By the previously known metric function of phenomenologically symmetric geometry of two sets of the rank $(2,2)$ the metric function of phenomenologically symmetric geometry of two sets of the rank $(3,2)$ is found, by the phenomenologically symmetric geometry of two sets of the rank $(3,2)$ we find phenomenologically symmetric geometry of two sets of the rank $(4,2)$. Then it is proved that embedding of phenomenologically symmetric geometry of two sets of the rank $(4,2)$ into the phenomenologically symmetric geometry of two sets of the rank $(5,2)$ is absent. To solve the problem we generate special functional equations which are reduced to well-known differential equations.
-
Об управлении отдельными асимптотическими инвариантами двумерных линейных управляемых систем с наблюдателем, с. 445-461Рассматривается линейная нестационарная управляемая система с наблюдателем с локально интегрируемыми и интегрально ограниченными коэффициентами $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p.\qquad (2)$$ Исследуется задача управления асимптотическими инвариантами системы, замкнутой посредством линейной нестационарной динамической обратной связи по выходу. Метод исследования, представленный в работе, базируется на построении системы асимптотической оценки состояния системы (1), (2), введенной Р. Калманом. Для решения задачи используется обобщение понятия равномерной полной управляемости по Калману, предложенное Е.Л. Тонковым для систем с коэффициентами из более широких функциональных классов. Дано определение равномерной полной наблюдаемости (в смысле Тонкова) для системы (1), (2). Для $n=2$ доказано, что свойство равномерной полной управляемости и равномерной полной наблюдаемости системы (1), (2) (в смысле Тонкова) с локально интегрируемыми и интегрально ограниченными коэффициентами является достаточным условием глобальной управляемости верхнего особого показателя Боля, а также характеристических показателей Ляпунова системы, замкнутой посредством линейной динамической обратной связи по выходу. Для доказательства используются установленные ранее результаты о равномерной глобальной достижимости двумерной системы (1), замкнутой линейной нестационарной статической обратной связью по состоянию, при условии равномерной полной управляемости (в смысле Тонкова) открытой системы (1).
линейная управляемая система с наблюдателем, равномерная полная управляемость, равномерная полная наблюдаемость, глобальная управляемость асимптотических инвариантов
Control over some asymptotic invariants of two-dimensional linear control systems with an observer, pp. 445-461We consider a linear time-varying control system with an observer with locally integrable and integrally bounded coefficients $$\dot x =A(t)x+ B(t)u, \quad x\in\mathbb{R}^n,\quad u\in\mathbb{R}^m,\quad t\geqslant 0, \qquad (1)$$ $$y =C^*(t)x, \quad y\in\mathbb{R}^p. \qquad(2)$$ We study a problem of control over asymptotic invariants for the system closed by linear dynamic output feedback with time-varying coefficients. The research method presented in the paper is based on the construction of a system of asymptotic estimation for the state of the system (1), (2), introduced by R. Kalman. For solving the problem, we use the extension of the notion of uniform complete controllability (in the sense of Kalman) proposed by E.L. Tonkov for systems with coefficients from wider functional classes. The notion of uniform complete observability (in the sense of Tonkov) is given for the system (1), (2). For $n=2$, it is proved that uniform complete controllability and uniform complete observability (in the sense of Tonkov) of the system (1), (2) with locally integrable and integrally bounded coefficients are sufficient for arbitrary assignability of the upper Bohl exponent and of the complete spectrum of the Lyapunov exponents for the system closed-loop by linear dynamic output feedback. For the proof, we use the previously established results on uniform global attainability of a two-dimensional system (1), closed by linear time-varying static state feedback, under the condition of uniform complete controllability (in the sense of Tonkov) of the open-loop system (1).
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.