Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О расширении интеграла Римана-Стилтьеса, с. 135-152Исследуются свойства правильных функций, а также ограниченных функций, имеющих не более чем счетное множество точек разрыва (названных $\sigma$-непрерывными). Доказана теорема об интегрируемости по Риману-Стилтьесу $\sigma$-непрерывных функций по непрерывным функциям ограниченной вариации, а также предельная теорема Хелли для таких интегрируемых и интегрирующих функций. Процесс интегрирования по Риману-Стилтьесу расширяется на случай интегрирования $\sigma$-непрерывных функций по произвольным функциям ограниченной вариации: вводится $(*)$-интеграл как сумма классического интеграла Римана-Стилтьеса по непрерывной части функции ограниченной вариации и суммы произведений значений интегрируемой функции на скачки интегрирующей. Таким образом, $(*)$-интеграл позволяет интегрировать разрывные функции по разрывным. Все свойства $(*)$-интеграла выводятся непосредственно из этого определения. Так, для $(*)$-интеграла доказывается формула интегрирования по частям, теорема о перемене порядка интегрирования, а также все необходимые для дальнейшегоприменения предельные теоремы, в том числе предельная теорема типа теоремы Хелли.
функции ограниченной вариации, правильные функции, $\sigma$-непрерывные функции, интеграл Римана-Стилтьеса, $(*)$-интеграл
On the extension of a Rieman-Stieltjes integral, pp. 135-152In this paper, the properties of the regular functions and the so-called $\sigma$-continuous functions (i.e., the bounded functions for which the set of discontinuity points is at most countable) are studied. It is shown that the $\sigma$-continuous functions are Riemann-Stieltjes integrable with respect to continuous functions of bounded variation. Helly's limit theorem for such functions is also proved. Moreover, Riemann-Stieltjes integration of $\sigma$-continuous functions with respect to arbitrary functions of bounded variation is considered. To this end, a $(*)$-integral is introduced. This integral consists of two terms: (i) the classical Riemann-Stieltjes integral with respect to the continuous part of a function of bounded variation, and (ii) the sum of the products of an integrand by the jumps of an integrator. In other words, the $(*)$-integral makes it possible to consider a Riemann-Stieltjes integral with a discontinuous function as an integrand or an integrator. The properties of the (*)-integral are studied. In particular, a formula for integration by parts, an inversion of the order of the integration theorem, and all limit theorems necessary in applications, including a limit theorem of Helly's type, are proved.
-
В работе вводится понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Показано, что всякая функция, заданная и непрерывная на замыкании $X$ открытого ограниченного множества $X_0\subseteq\mathbb R^n$, является правильной (принадлежит пространству $\langle{\rm G(}X),\|\cdot\|\rangle$). Доказана полнота пространства ${\rm G}(X)$ по $\sup$-норме $\|\cdot\|$. Оно является замыканием пространства ступенчатых функций. Во второй части работы определено и исследовано пространство ${\rm G}^J(X)$, отличающееся от пространства ${\rm G}(X)$ тем, что в его определении вместо разбиений используются $J$-разбиения, элементы которых — измеримые по Жордану открытые множества. Перечисленные выше свойства пространства ${\rm G}(X)$ переносятся на пространство ${\rm G}^J(X)$. В заключительной части работы определено понятие $J$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по Жордану замыкание открытого ограниченного множества $X_0\subseteq\mathbb R^n$, а функция $f\colon X\to\mathbb R$ интегрируема по Риману, то она $J$-интегрируема. При этом значения интегралов совпадают. Все функции $f\in{\rm G}^J(X)$ являются $J$-интегрируемыми.
On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral, pp. 387-401The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.
-
В пространстве прерывистых функций исследовано параметрическое семейство подпространств специального вида и подпространство, представляющее их пересечение. Оно содержит в себе пространство функций ограниченной вариации. Исследована решетка подпространств, зависящая от параметра. Исследованы вопросы существования интеграла Римана–Стилтьеса на элементах подпространств. Доказана полнота подпространств (в каждом подпространстве используется собственная норма). Исследованы соотношения между нормами.
In the space of regulated functions the parametrical family of subspaces of special kind is investigated. Subspace crossing representing them is investigated too. It includes the space of functions of bounded variation. The lattice of subspaces depending from parameter is investigated. Questions of existence of integral Riemann–Stieltjes for elements of subspaces are investigated. Completeness of subspaces is proved (for everyone subspace own norm is used). Relations between norms are investigated.
-
О банаховых пространствах правильных функций многих переменных. Аналог интеграла Римана–Стилтьеса, с. 182-203В предыдущей работе авторов введено понятие правильной функции многих переменных $f\colon X\to\mathbb R$, где $X\subseteq\mathbb R^n$. В основе определения лежит понятие специального разбиения множества $X$ и понятие колебания функции $f$ на элементах разбиения. Пространство ${\mathrm G}(X)$ таких функций банахово по $\sup$-норме и является замыканием пространства ступенчатых функций. В настоящей работе определено и исследовано пространство ${\mathrm G}^F(X)$, отличающееся от ${\mathrm G}(X)$ тем, что здесь в определении правильных функций многих переменных вместо специальных разбиений фигурируют $F$-разбиения: их элементами являются измеримые по обобщенной мере Жордана (по мере $m_{_{\!F}}$) непустые открытые множества. (Через $F$ обозначена функция, порождающая меру $m_{_{\!F}}$.) Во второй части работы определено понятие $F$-интегрируемости функций многих переменных. Доказано, что если $X$ — это измеримое по мере $m_{_{\!F}}$ замыкание непустого открытого ограниченного множества $X_0\subseteq{\mathbb R}^n$, а функция $f\colon X\to {\mathbb R}$ интегрируема в смысле Римана–Стилтьеса относительно меры $m_{_{\!F}}$, то она $F$-интегрируема. При этом значения кратных интегралов совпадают. Все функции из пространства ${\mathrm G}^F(X)$ являются $F$-интегрируемыми. Доказаны основные свойства $F$-интеграла Римана–Стилтьеса.
On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral, pp. 182-203In the previous work of the authors, the concept of a regulated function of several variables $f\colon X\to\mathbb R$ was introduced, where $X\subseteq \mathbb R^n.$ The definition is based on the concept of a special partition of the set $X$ and the concept oscillation of the function $f$ on the elements of the partition. The space ${\rm G}(X)$ of such functions is Banach in the $\sup$-norm and is the closure of the space of step functions. In this paper, the space ${\rm G}^F(X)$ is defined and studied, which differs from ${\rm G}(X)$ in that here, in defining regulated functions of several variables, instead of special partitions, $F$-partitions are used: their elements are non-empty open sets measurable by the generalized Jordan measure (by the measure $m_{_{\!F}}$). (Symbol $F$ denotes the function generating the measure $m_{_{\!F}}.$) In the second part of the work, the concept of $F$-integrability of functions of several variables is defined. It is proved that if $X$ is the closure of a non-empty open bounded set $X_0\subseteq {\mathbb R}^n,$ measurable with respect to measure $m_{_{\!F}},$ and the function $f\colon X\to {\mathbb R}$ is integrable in the Riemann–Stieltjes sense with respect to the measure $m_{_{\!F}}$, then it is $F$-integrable. In this case, the values of the multiple integrals coincide. All functions from the space ${\rm G}^F(X)$ are $F$-integrable. The main properties of the Riemann–Stieltjes $F$-integral are proved.
-
В данной работе изучаются прямая начально-краевая задача и обратная задача определения коэффициента одномерного уравнения в частных производных со многими дробными производными Римана–Лиувилля. Исследована однозначная разрешимость прямой задачи и получены априорные оценки ее решения в весовых пространствах, которые будут использованы при изучении обратной задачи. Далее обратная задача эквивалентно сводится к нелинейному интегральному уравнению. Для доказательства однозначной разрешимости этого уравнения используется принцип неподвижной точки.
уравнение дробного порядка, прямая задача, обратная задача, метод Фурье, функция Миттаг–Леффлера, преобразование Лапласа, существование, единственностьThis work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.
-
В предыдущей работе автора для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определено понятие квазиинтеграла. Если существует интеграл Римана–Стилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом.
В настоящей работе доказана теорема существования и единственности решения квазиинтегрального уравнения с постоянной матрицей. Ядро системы - скалярная кусочно-непрерывная функция ограниченной вариации, компоненты уравнения - прерывистые функции, спектральный параметр - регулярное число. При определенных условиях квазиинтегральное уравнение можно интерпретировать как импульсную систему. Получено явное представление для решения однородного квазиинтегрального уравнения. Для абсолютно регулярного спектрального параметра определен аналог матрицы Коши, исследованы его свойства и получено явное представление для решения неоднородного квазиинтегрального уравнения в форме Коши. Аналогичные результаты получены для сопряженного и союзных уравнений.
Обсуждается возможность восстановления аппроксимирующего дефекта квазиинтеграла, - дефекта, порождающего аппроксимируемые решения импульсной системы.
Analogue of the Cauchy matrix for system of quasi-integral equations with constant coefficients, pp. 44-62In previous article we defined the concept of quasi-integral for two regulated functions on the interval and the special parameter, called ¾defect¿. If there is the Riemann–Stieltjes integral, then for any defect there is a quasi-integral, and they are all equal. The Perron–Stieltjes integral, if it exists, coincides with one of quasi-integrals where the defect is defined in a special way.
In the present article the theorem of existence and uniqueness of solution for a quasi-integral equation with a constant matrix is proved. System’s kernel is a scalar piecewise continuous function of bounded variation. Components of the equation are regulated functions, spectral parameter is a regular number. Under certain conditions a quasi-integral equation can be interpreted as an impulse system. An explicit representation for the solution of a quasi-integral homogeneous equation is given. For an absolutely regular spectral parameter, the analogue of the Cauchy matrix is defined, its properties are investigated and the explicit representation for the solution of the nonhomogeneous quasi-integral equation in the Cauchy form is given. Similar results are obtained for the adjoint and associated equations.
We discussed the possibility of restoration of the approximating defect of quasi-integral, which is defect generating approximated solutions of the impulse system.
-
В статье вводится новое понятие выпуклости функции: $(s,m_{1},m_{2})$-выпуклые функции. Этот класс функций объединяет несколько типов выпуклости, встречающихся в литературе. Установлены некоторые свойства $(s,m_{1},m_{2})$-выпуклости и приведены простые примеры функций, принадлежащих этому классу. На основе доказанного тождества получены новые интегральные неравенства типа Адамара в терминах оператора дробного интегрирования. Показано, что эти результаты дают, в частности, обобщение ряда имеющихся в литературе результатов.
выпуклая функция, неравенство типа Адамара, дробный интеграл Римана–Лиувилля, неравенство Гёльдера, неравенство о среднихThe article introduces a new concept of convexity of a function: $(s,m_{1},m_{2})$-convex functions. This class of functions combines a number of convexity types found in the literature. Some properties of $(s,m_{1},m_{2})$-convexities are established and simple examples of functions belonging to this class are given. On the basis of the proved identity, new integral inequalities of the Hadamard type are obtained in terms of the fractional integral operator. It is shown that these results give us, in particular, generalizations of a number of results available in the literature.
-
О двойном интеграле Римана-Стилтьеса, с. 366-378Рассмотрены новые свойства криволинейного интеграла Римана-Стилтьеса. Доказано, что криволинейный интеграл Римана-Стилтьеса не зависит от пути интегрирования, если интегрируемая и интегрирующая функции зависят только от одной переменной. Найдено новое необходимое условие функциональной зависимости функций двух переменных. Предлагается новый подход к определению двойного интеграла Римана-Стилтьеса, который содержит не одну, а две интегрирующие функции. Рассмотрены общие свойства двойного интеграла Римана-Стилтьеса. Приведены способы вычисления двойного интеграла для случая гладких или кусочно-гладких интегрирующих функций. Получена одна формула для преобразования двойного интеграла Римана-Стилтьеса в повторный интеграл.
On the Riemann-Stieltjes double integral, pp. 366-378The article deals with the new properties of the Riemann-Stieltjes curvilinear integral. It is proved that the Riemann-Stieltjes curvilinear integral is independent of path of integration if an integrable and an integrating functions depend only on one variable. A new necessary condition of the functional dependence of functions of two variables is found. The author proposes a new approach to the definition of the Riemann-Stieltjes double integral, which contains not one but two integrating functions. General properties of the Riemann-Stieltjes double integral are discussed. Methods for calculating the double integral for the case of smooth or piecewise-smooth integrating functions are presented. A formula for the conversion of the Riemann-Stieltjes double integral into an iterated integral is obtained.
-
Для двух прерывистых функций, заданных на отрезке, и специального параметра, названного дефектом, определяется понятие квазиинтеграла. Если существует интеграл Римана–Стилтьеса, то для любого дефекта существует квазиинтеграл, и все они равны между собой. Интеграл Перрона–Стилтьеса, если он существует, совпадает с одним из квазиинтегралов, где дефект определен специальным образом. Приведены необходимые и достаточные условия существования квазиинтегралов, доказаны их основные свойства, в частности, аналог формулы интегрирования по частям.
We define the concept of a quasi-integral for two regulated functions defined on a segment and for a special parameter called a defect. In case there exists the Riemann-Stieltjes integral, there is a quasi-integral for any defect, and all quasi-integrals are equal. The Perron-Stieltjes integral, if it exists, coincides with one of quasi-integrals where the defect is defined in a special way. We give proofs of necessary and sufficient conditions for the existence of quasi-integrals and of their basic properties, in particular, of the analogue of the formula of integration by parts.
-
О криволинейном интеграле Римана-Стилтьеса, с. 117-126Вводится понятие криволинейного интеграла Римана-Стилтьеса, доказываются некоторые его свойства. Показано, что такой интеграл определяет знакопеременную меру на плоскости, указаны условия, при которых эта мера будет счётно-аддитивной.
On the line contour Riemann-Stiltjes integral, pp. 117-126We introduce the notion of the line contour Riemann-Stiltjes integral and describe some of its properties. In particular, we show that this integral determines a signed measure on a plane, and specify the sufficient conditions for this measure to be countably additive.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.