Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'amplitude equation':
Найдено статей: 15
  1. В работе изучается влияние цветного шума на равновесные режимы нелинейных динамических систем. Для исследования реакции системы на малые возмущения используется асимптотический подход, развивающий технику функций стохастической чувствительности. Стохастическая чувствительность равновесия в общей многомерной динамической системе задается некоторой матрицей. Для этой матрицы стохастической чувствительности в работе получено матричное алгебраическое уравнений. Точное решение этого уравнения дается для важного класса нелинейных осцилляторов с возмущениями в форме цветных шумов. Эта теория применяется к параметрическому исследованию отклика электронного генератора с жестким возбуждением на цветные шумы с различным временем корреляции. В работе исследована зависимость дисперсии случайных состояний от характерного времени корреляции. Показано, что эта зависимость может быть немонотонной и иметь максимумы, соответствующие резонансам. В работе обсуждается вероятностный механизм стохастической генерации колебаний больших амплитуд, вызванной цветным шумом.

    The influence of colored noise on the equilibrium regimes of nonlinear dynamical systems is investigated. To study the response of the system to small perturbations, we use an asymptotic approach that develops the stochastic sensitivity function technique. The stochastic sensitivity of equilibrium in a general multidimensional dynamical system is defined by some matrix. For this stochastic sensitivity matrix, we obtain a matrix algebraic equation. An exact solution of this equation is given for an important class of nonlinear oscillators with perturbations in the form of colored noises. This theory is applied to the parametric study of the response of the electronic generator with hard excitation to colored noises with various correlation times. The dependence of the dispersion of random states on the characteristic correlation time is investigated. It is shown that this dependence can be nonmonotonic and have maxima corresponding to the resonances. The paper discusses the probabilistic mechanism of the stochastic generation of large-amplitude oscillations caused by color noise.

  2. Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.

    The procedure of approximate calculation of amplitudes for periodic solutions bifurcating from rest points in the presence of resonance is studied for a class of dynamical systems. This class includes equations of spring beam oscillations located on elastic foundations, autonomous systems of ordinary differential equations, hydrodynamical systems etc. The methodological basis of the procedure is the Lyapunov-Schmidt method considered in the context of general theory of smooth SO(2)-equivariant Fredholm equations (in infinite dimensional Banach spaces). The topic of the paper develops and extends the earlier research of B.M Darinsky, Y.I. Sapronov, and V.A. Smolyanov.

  3. Рассматривается трехмерная бидиффузионная конвекция валикового типа в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа. Методом многомасштабных разложений получена AΨ-система амплитудных уравнений, описывающая вариации амплитуды конвективных ячеек. Ширина ячеек может быть произвольной, что актуально для больших чисел Рэлея. Отмечается, что в трехмерном случае взаимодействие конвекции и поля горизонтальной завихренности играет существеннуюроль в динамике системы, и им нельзя пренебрегать. Обсуждаются различные формы выведенных уравнений.

    Three dimensional roll-type double-diffusive convection in a horizontally infinite layer of an uncompressible liquid is considered in the neighborhood of Hopf bifurcation points. An AΨ-system of amplitude equations for the variations of convective rolls amplitude is derived by multiple-scaled method. The cell width can be arbitrary, which is important for large Rayleigh numbers. It is noted that in 3D case an interaction of convection and horizontal vorticity field plays an essential role and can hardly be neglected. Different cases of the derived equations are discussed.

  4. Рассматривается трехмерная бидиффузионная конвекция в бесконечном по горизонтали слое несжимаемой жидкости в окрестности точек бифуркации Хопфа, взаимодействующая с полем горизонтальной завихренности. Методом многомасштабных разложений получено семейство амплитудных уравнений, описывающее вариации амплитуды конвективных ячеек, форма которых задаётся как суперпозиция конечного числа конвективных валиков с различными волновыми векторами.

    Для численного моделирования полученных систем амплитудных уравнений были разработаны несколько численных схем, основанных на современных ETD (exponential time differencing) псевдоспектральных методах. Написаны пакеты программ для моделирования валиковой конвекции, а также конвекции с ячейками квадратного и гексагонального типов. Численное моделирование показало, что конвекция имеет вид вытянутых "облаков" или "нитей". Было замечено, что в системе достаточно быстро развивается состояние диффузионного хаоса, когда первоначальное симметричное состояние разрушается, и конвекция становится нерегулярной как по пространству, так и по времени. При этом в некоторых областях возникают пиковые всплески завихренности.

    Three-dimensional double-diffusive convection in a horizontally infinite layer of an uncompressible liquid interacting with horizontal vorticity field is considered in the neighborhood of Hopf bifurcation points. A family of amplitude equations for variations of convective cells amplitude is derived by multiple-scaled method. Shape of the cells is given as a superposition of a finite number of convective rolls with different wave vectors.

    For numerical simulation of the obtained systems of amplitude equations a few numerical schemes based on modern ETD (exponential time differencing) pseudospectral methods have been developed. The software packages have been written for simulation of roll-type convection and convection with square and hexagonal type cells. Numerical simulation has showed that the convection takes the form of elongated “clouds” or “filaments”. It has been noted that in the system quite rapidly a state of diffusive chaos is developed, where the initial symmetric state is destroyed and the convection becomes irregular both in space and time. At the same time in some areas there are bursts of vorticity.

  5. В современной физической литературе неоднократно возникала потребность в формулах, позволяющих в квантовой одномерной задаче рассеяния свести вычисление вероятности отражения (прохождения) для потенциала, состоящего из нескольких «барьеров», к вероятностям отражения и прохождения через эти «барьеры». В настоящей работе исследуется задача рассеяния для разностного оператора Шрёдингера с потенциалом, являющимся суммой N функций (описывающих «барьеры» или «слои») с попарно непересекающимися носителями. С помощью уравнения Липпмана-Швингера доказана теорема, позволяющая вычисление амплитуд отражения и прохождения для данного потенциала свести к вычислению амплитуд отражения и прохождения для слагаемых. Для N=2 получены простые явные формулы, осуществляющие такое сведение. Рассмотрены частные случаи четного первого барьера и двух одинаковых четных (после соответствующих сдвигов) барьеров. Разумеется, аналогичные результаты справедливы и для вероятностей отражения и прохождения. Получено простое уравнение для нахождения резонансов двухбарьерной структуры в терминах амплитуд для каждого из двух барьеров.

    В статье также приведена иная схема доказательства полученных результатов, основанная на разложении в ряд T-оператора, позволяющая обосновать физические представления о рассеянии на многослойной структуре как о многократном рассеянии на отдельно взятых слоях. При доказательстве утверждений используется известный прием сведения уравнения Липпмана-Швингера к «модифицированному» уравнению в гильбертовом пространстве, что позволяет, в свою очередь, воспользоваться теорией Фредгольма. Конечно, все полученные результаты остаются справедливыми и для «непрерывного» оператора Шрёдингера, а выбор дискретного подхода обусловлен его растущей популярностью в квантовой теории твердого тела.

    In modern physics literature, the need for formulas that permit, in a quantum one-dimensional problem, to reduce a calculation of the reflection (transmission) probability for the potential consisting of some “barriers” to the reflection and transmission probabilities over these “barriers” repeatedly occurred. In this paper, we study the scattering problem for the difference Schrodinger operator with the potential which is the sum of N functions (describing the “barriers” or “layers”) with pairwise disjoint supports. With the help of the Lippmann-Schwinger equation, we proved the theorem which reduces the calculation of the reflection and transmission amplitudes for this potential, to the calculation of the ones for these barriers. For N=2 simple explicit formulas which realized this reduction were obtained. The particular cases for the even first barrier and two identical even (after appropriate shifts) barriers were studied. Of course, the similar results hold for the reflection (transmission) probabilities. We obtained the simple equation for the double-barrier structure resonances in terms of the amplitudes of each of the two barriers.

    In the paper, we also present the alternative scheme of the proof of the obtained results which are based on the series expansion of the T-operator. This approach substantiates the physical understanding of the scattering by a multilayer structure as multiple scattering on separate layers. To proof the theorems, the known method of reduction of the Lippmann-Schwinger equation to the “modified” equation in a Hilbert space is used. Of course, all the results remain valid for the “continuous” Schrodinger operator, and the choice of the discrete approach is due to its growing popularity in the quantum theory of solids.

  6. Рассматривается трехмерная бидиффузионная конвекция в бесконечном плоском слое несжимаемой жидкости в окрестности точек бифуркации Хопфа. Методом многомасштабных разложений выведена система амплитудных уравнений для горизонтальных вариаций амплитуды конвективных ячеек квадратного типа. Уделено внимание взаимодействию конвекции с горизонтальным вихрем. Обсуждаются различные частные случаи получившихся уравнений.

    Three dimensional double-diffusive convection in a horizontally infinite layer of an uncompressible liquid is considered in the neighborhood of Hopf bifurcation points. A system of amplitude equations for horizontal variations of the amplitude of a square type convective cells is derived by multiple-scale method. An attention is paid to an interaction of convection and horizontal curl. Different cases of the derived equations are discussed.

  7. Разработана осесимметрическая модель на основе упрощенных уравнений вязкой жидкости для исследования двухслойного течения со свободной границей, создаваемого подъемом жесткого блока фундамента. Получено численное решение полной нелинейной системы и выполнен анализ малых возмущений движения границ слоев. Основной результат заключается в том, что кольцевая структура образуется на поверхности жидкости, если плотность нижнего слоя больше, чем у верхнего. Предлагаемая модель может представлять интерес для геофизики при изучении процесса образования крупномасштабных кольцевых структур на поверхности Земли и других планет.

    The axisymmetric model based on simplified equations of incompressible viscous fluid is developed to investigate the evolution of free-surface two-layered creeping flow subjected by the uplift of the substrate's block. We numerically solve the nonlinear governing equations and perform the small-amplitude analysis of the behavior of both fluid interfaces. The main result is that a ring pattern does occur on the upper surface provided that the density of the lower layer is greater then that of the upper one. The presented model may be of interest for geophysics to study large-scale ring structures on the Earth and other solid planets.

  8. Статья посвящена малой нутации осесимметричного гироскопа в поле сил тяжести. Получено разложение известного решения уравнения нутации как функции времени, по степеням амплитуды. При этом частотами комбинационного колебания третьего порядка являются как утроенная частота, так и частота, совпадающая с исходной. Найдена формула для амплитуды нутации как функции интегралов движения гироскопа. Также вычислена частота бесконечно малой нутации. Другой способ получения разложения заключается в использовании результатов общей теории свободных одномерных колебаний. Этот способ основывается на возможности представить нутацию гироскопа как движение материальной точки единичной массы в поле, которое кубично-квадратично зависит от координаты. В этом случае единственной частотой комбинационного колебания третьего порядка является только утроенная исходная частота. Таким образом, оба способа дают одинаковый результат лишь для колебаний не выше второго порядка. В третьем приближении существующая теория колебаний недостаточна.

    Voytik V.V., Migranov N.G.
    Small nutation of a symmetic gyroscope: two viewpoints, pp. 89-101

    The paper is devoted to the small nutation of an axisymmetric gyroscope in the field of gravity. The expansion of the known solution of the nutation equation as a function of time in powers of the amplitude is obtained. In this case, the frequencies of third order Raman oscillations are both the tripled frequency and the frequency coinciding with the initial one. A formula is found for the nutation amplitude as a function of the integrals of the gyroscope motion. The frequency of zero nutation is also calculated. Another way to obtain the decomposition is to use the results of the general theory of free one-dimensional oscillations. This method is based on the ability to represent the gyro nutation as the movement of a material point of unit mass in a field that cubically-quadratically depends on the coordinate. In this case the only frequency of the third-order Raman oscillation is a triple of the original frequency. Thus, both methods give the same result only for oscillations no higher than second order. In the third approximation, the existing theory of oscillations is insufficient.

  9. В статье рассматривается дискретный оператор Шредингера на графе с вершинами на двух пересекающихся прямых, возмущенный убывающим потенциалом. Данный оператор является гамильтонианом электрона вблизи структуры, образованной квантовой точкой и выходящими из нее четырьмя квантовыми проволоками в приближении сильной связи, широко используемом в настоящее время в физической литературе для изучения подобных наноструктур. Доказаны существование и единственность решения соответствующего уравнения Липпмана–Швингера, для решения получена асимптотическая формула. Изучена нестационарная картина рассеяния. Исследуется задача рассеяния для данного оператора в случае малого потенциала, а также в случае, когда малы как потенциал, так и скорость квантовой частицы. Получены асимптотические формулы для вероятностей распространения частицы во всех возможных направлениях.

    The paper considers the discrete Schrödinger operator on a graph with vertices on two intersecting lines, which is perturbed by a decreasing potential. This operator is the Hamiltonian of an electron near a structure formed by a quantum dot and four outgoing quantum wires in the tight-binding approximation widely used in the physics literature for studying such nanostructures. We have proved the existence and uniqueness of the solution of the corresponding Lippmann-Schwinger equation and obtained the asymptotic formula for it. The non-stationary scattering picture has been studied. The scattering problem for the above operator in the case of a small potential, and also in the case of both a small potential and small velocity of a quantum particle, is investigated. Asymptotic formulas for the probabilities of the particle propagation in all possible directions have been obtained.

  10. Предлагается осесимметрическая модель, построенная на основе уравнений Стокса, для исследования образования многокольцевой структуры в ползущем двухслойном течении с переменной толщиной слоев. Каждый слой имеет постоянную плотность и вязкость. Верхний слой имеет меньшую плотность, чем нижний. Течение создается рельефом поверхности и границы раздела слоев. Предполагается, что эффекты поверхностного натяжения пренебрежимо малы. Мы используем асимптотический метод многих масштабов для получения уравнений, описывающих неустойчивость, возникающую в виде волны в этом течении. С помощью преобразований Фурье и Лапласа мы исследуем уравнения главного приближения для этой неустойчивости в предположении малости возмущений. Асимптотическое исследование показывает, что эта неустойчивость проявляется в виде осесимметричной волны, длина которой соизмерима с толщиной слоев, и толщины слоев играют главную роль в пространственном распределении ее экстремумов. Остальные параметры модели влияют в основном на амплитуду волны. Получено уравнение, связывающее толщины слоев с распределением экстремумов, которое применяется для исследования закономерности расположения кольцевых хребтов, наблюдаемой для большинства крупномасштабных кольцевых структур на Луне. Используя параметры некоторых лунных кольцевых структур, мы определили радиусы последовательно расположенных экстремумов неустойчивости и провели сравнение модельных результатов с радиусами концентрических хребтов некоторых многокольцевых структур на Луне.

     

    The axisymmetric model based on the Stokes equations is proposed to investigate the multi-ring pattern formation in two-layer creeping flow with variable thickness of layers. Each layer has uniform density and viscosity. The upper layer is lighter than the lower layer. The flow is generated by both surface and interface geometry. The effect of surface tension is supposed to be negligible. We apply the method of multiple scales to obtain the governing equations describing instability in the form of wave in the flow. Using the Fourier-Laplace method, we analyze the small-amplitude leading behavior of the instability. The asymptotic study reveals that this kind of instability manifests itself as axisymmetric wave which length is comparable with layer thickness; moreover, layer thicknesses play a major role in spatial distribution of wave extrema. The other model parameters alter mostly the wave amplitude. The equation relating extrema distribution to layer thicknesses is derived. We apply the obtained results to study a ring spacing rule observed for most multi-ring basins on the Moon. Using parameters of some lunar multi-ring basins we calculate the consecutive crest radii of the unstable wave and compare the results of simulation with the measured ring radii.

     

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref