Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'axis-symmetric oscillations':
Найдено статей: 6
  1. В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных автономных дифференциальных систем на положительной полуоси. На множестве ненулевых решений автономных систем установлены соотношения между этими показателями колеблемости. Полностью изучены спектры показателей колеблемости автономных систем. Оказалось, что они напрямую зависят от корней соответствующего характеристического многочлена системы. Как следствие, найдены спектры всех показателей колеблемости автономных систем с симметричной матрицей. Доказано, что они состоят из одного нулевого значения. Кроме того, дано полное описание главных значений показателей колеблемости таких систем. Эти значения для показателей колеблемости нестрогих знаков, корней и гиперкорней совпали с множеством модулей мнимых частей собственных значений матрицы системы, а показатели колеблемости строгих знаков могут состоять из нуля и наименьшего по модулю из мнимых частей комплексных корней соответствующего характеристического многочлена.

    In this paper, we study various types of exponents of oscillation (upper or lower, strong or weak) of zeros, roots, hyperroots, strict and non-strict signs of non-zero solutions of linear homogeneous autonomous differential systems on the positive semi-axis. On the set of non-zero solutions of autonomous systems the relations between these exponents of oscillation are established. The spectra of the exponents of autonomous systems' oscillation are fully studied. It turned out that they directly depend on the roots of the corresponding characteristic polynomial of the system. As a consequence, spectra of all exponents of oscillation of autonomous systems with symmetric matrix are found. It is proved that they consist of a single zero value. In addition, a full description of the main values of the exponents of oscillation of such systems is given. These values for the exponents of oscillation of non-strict signs, roots and hyperroots coincided with the set of modules of imaginary parts of the system matrix's eigenvalues, and the exponents of oscillation of strict signs can consist of zero and the least, in absolute magnitude, imaginary part of the complex roots of the corresponding characteristic polynomial.

  2. Рассматривается движение твердого тела в однородном поле тяжести в случае высокочастотных вертикальных гармонических колебаний малой амплитуды одной из его точек (точки подвеса). Предполагается, что центр масс тела лежит на одной из главных осей инерции для точки подвеса. В рамках приближенной автономной системы дифференциальных уравнений, записанной в форме канонических уравнений Гамильтона, рассматриваются частные движения тела - перманентные вращения, происходящие вокруг вертикально расположенных осей из главных плоскостей инерции, примыкающих к указанной главной оси. Такие перманентные вращения существуют и для тела с неподвижной точкой подвеса. Исследуется влияние быстрых вибраций на устойчивость этих вращений. Для всех допустимых значений четырехмерного пространства параметров (двух инерционных параметров и параметров, характеризующих частоту вибраций и угловую скорость вращения) выписаны и проиллюстрированы необходимые и в ряде случаев достаточные условия устойчивости, рассматриваемые как условия устойчивости соответствующих положений равновесия приведенной (по Раусу) автономной гамильтоновой системы с двумя степенями свободы. Проведен нелинейный анализ устойчивости для двух частных значений инерционного параметра, отвечающих динамически симметричному телу и телу с геометрией масс для случая Бобылева-Стеклова. Рассмотрены нерезонансный и резонансный случаи, а также случаи вырождения. Проведено сравнение полученных результатов устойчивости с соответствующими результатами для тела с неподвижной точкой.

    The motion of a rigid body in a uniform gravity field is considered for the case of high-frequency vertical harmonic small-amplitude oscillations of one of its points (the suspension point). The center of mass of the body is assumed to lie on one of the principal axes of inertia for the suspension point. In the framework of an approximate autonomous system of differential equations of motion written in the canonical Hamiltonian form the special motions of the body are studied, which are permanent rotations about the axes directed vertically and lying in the principal planes of inertia containing the above-mentioned principal axis. Analogous permanent rotations exist for the body with a fixed suspension point. The influence of the fast vibrations on the stability of these rotations is examined. For all admissible values of the four-dimensional parameter space (two inertial parameters, and parameters characterizing the vibration frequency and the rotation angular velocity) the necessary and in some cases sufficient conditions for stability are written and illustrated. They are considered as the stability conditions of the corresponding equilibrium positions of the reduced (in the sense of Routh) autonomous Hamiltonian two-degree-of-freedom system. Nonlinear stability analysis is carried out for two special cases of the inertial parameter corresponding to the dynamically symmetric body and the body with the geometry of the mass for the Bobylev-Steklov case. The nonresonant and resonant cases are considered as well as the degeneration cases. A comparison is made between the results obtained and the corresponding results for the body with the fixed suspension point.

  3. Рассмотрено движение динамически симметричного твердого тела в однородном поле тяжести в случае высокочастотных вертикальных гармонических колебаний малой амплитуды одной из его точек (точки подвеса). Исследование проводится в рамках приближенной автономной системы дифференциальных уравнений, записанной в форме канонических уравнений Гамильтона. Дано подробное описание допустимых дуг перманентных вращений тела, происходящих вокруг вертикально расположенных осей. Выявлены случаи перманентных вращений, обусловленные вибрациями и не существующие для тела с неподвижной точкой. Для одного из таких случаев, когда ось вращения лежит в главной плоскости инерции, не содержащей центр масс тела и не совпадающей с экваториальной плоскостью инерции, проведен полный нелинейный анализ устойчивости соответствующего положения равновесия приведенной системы с двумя степенями свободы. В трехмерном пространстве параметров задачи найдены области устойчивости в линейном приближении. Рассмотрены случаи резонансов третьего и четвертого порядков, а также случаи вырождения.

    The motion of a dynamically symmetric rigid body in a uniform gravity field is considered for the case of vertical high-frequency harmonic oscillations of small amplitude of one of its points (the suspension point). The investigation is carried out within the framework of an approximate autonomous system of differential equations of motion written in the canonical Hamiltonian form. A detailed description of admissible arcs of permanent rotations of the body about vertical axes is given. Special cases of motions of the body are found which are caused by fast vibrations of the suspension point. One of these cases is studied when the rotation axis lies in the principal plane of inertia which does not contain the center of mass of the body and does not coincide with the equatorial plane of inertia. A complete nonlinear stability analysis of the corresponding equilibrium position of the two-degree-of-freedom system is carried out. For all admissible values of the three-dimensional parameter space, regions of linear stability are found. Cases of resonances of the third and fourth orders, as well as degeneration cases, are considered.

  4. Исследуется нерезонансная эволюция угла наклона оси вращения гипотетической экзо-Земли в гравитационном поле звезды, спутника планеты (экзо-Луны) и внешней планеты (экзо-Юпитера). Считаем, что экзо-Земля является динамически симметричным твердым телом $(A = B)$, эллипсоид инерции которого близок к сфере. Полагаем также, что обе планеты движутся по кеплеровским эллипсам вокруг звезды. Траектория спутника — эволюционирующий эллипс с фокусом в экзо-Земле: эволюционирует долгота восходящего узла орбиты спутника на плоскости «эклиптики» и аргумент перицентра. В предположении, что частоты орбитального эллиптического движения есть величины порядка единицы, получены канонические усредненные уравнения возмущенных колебаний оси вращения экзо-Земли, содержащие параметры, медленно меняющиеся со временем. В предположении, что массы планет малы по сравнению с массой звезды, получены в первом приближении метода малого параметра упрощенные уравнения колебаний оси вращения планеты. Интеграция этих уравнений дает явную зависимость угла наклона оси вращения экзо-Земли от времени. Показано, что гравитационные моменты от внешней планеты формируют вековую, долгопериодическую моду колебаний с частотой, равной частоте невозмущенной прецессии оси собственного вращения экзо-Земли. Влияние экзо-Луны сводится к появлению короткопериодических гармоник с частотой, близкой к частоте прецессии долготы восходящего узла орбиты экзо-Луны. Проведены расчеты для двух экзопланетных систем: для системы, подобной Солнечной, и для планетной системы 7 Canis Majoris. Описан эффект дестабилизации (стабилизации) колебаний по углу нутации оси вращения экзо-Земли под действием гравитационных моментов от экзо-Луны и экзо-Юпитера.

    We investigate the non-resonant evolution of the axial tilt of hypothetical exo-Earth in the gravitational field of a star, planet's satellite (exo-Moon) and outer planet (exo-Jupiter). The exo-Earth is assumed to be rigid, axially symmetric ($A=B$) and almost spherical. We assume the orbits of the both exo-planets to be Keplerian ellipses with focus in the star, the orbit of exo-Moon to be an evolving Keplerian ellipse with slowly changing of ascending node longitude and periapsis argument. Assuming the frequencies of the unperturbed orbital elliptical motion to be of the order of unity, we obtain the canonical averaged equations describing the perturbed oscillations of the exo-Moon spin axis. These equations contain parameters changing slowly over time. Using the smallness of the planets' masses relative to the mass of the star, we have obtained simplified equations of oscillations of the exo-Earth spin axis by the small parameter method. Time integration of simplified equations gives the axial tilt of exo-Moon as a function of time. It is shown that the torques from the exo-Jupiter create a secular, long-period oscillation mode in axial tilt with a frequency equals to frequency of unperturbed spin axis precession of the exo-Earth. The impact of the exo-Moon on the evolution of the exo-Earth spin axis is that short-period harmonics appear in the oscillations of the axial tilt. The frequency of such oscillations is close to the precession frequency of the ascending node longitude of the exo-Moon orbit. We have calculated the evolution of exo-Earth axial tilt for two exo-planetary systems, i.e., for a system similar to the solar system, and for a planetary exo-system 7 Canis Majoris. The effect of destabilization (stabilization) of the exo-Earth tilt oscillations due to the torques exerted by exo-Moon and exo-Jupiter is described.

  5. Обсуждается вопрос о возбуждении параметрических колебаний защемленной одним концом консольной балки (цилиндрической трубки), внутренняя полость которой заполнена идеальной несжимаемой жидкостью. Решаются гидродинамическая задача о взаимодействии стенок балки и жидкости и задача о параметрических поперечных колебаниях консоли.

    In this paper we discuss a question of exciting parametric oscillations of the balk with one end block up (cylindrical tube), internal value of which is filled with ideal incompressible liquid. First task is a hydrodynamic task about interaction of the walls of console and liquid and second task is about parametric cross oscillations of console.

  6. Исследованы нормальные колебания вязкой стратифицированной жидкости, частично заполняющей произвольный сосуд и ограниченной сверху упругой горизонтальной мембраной. При этом рассматривается скалярная модельная задача, отражающая основные особенности векторной пространственной задачи. Получено характеристическое уравнение для собственных значений модельной задачи, изучается структура спектра и асимптотика ветвей собственных значений. Высказываются предположения о структуре спектра колебаний вязкой стратифицированной жидкости, ограниченной упругой мембраной, для произвольного сосуда. Доказано, что спектр задачи дискретен, расположен в правой комплексной полуплоскости симметрично относительно вещественной оси и имеет единственную предельную точку $+\infty$. Более того, спектр определенным образом локализован в правой полуплоскости, зона локации зависит от динамической вязкости жидкости.

    Normal oscillations of a viscous stratified fluid partially filling an arbitrary vessel and bounded above by an elastic horizontal membrane are studied. In this case, we consider a scalar model problem that reflects the main features of the vector spatial problem. The characteristic equation for the eigenvalues of the model problem is obtained, the structure of the spectrum and the asymptotics of the branches of the eigenvalues are studied. Assumptions are made about the structure of the oscillation spectrum of a viscous stratified fluid bounded by an elastic membrane for an arbitrary vessel. It is proved that the spectrum of the problem is discrete, located in the right complex half-plane symmetrically with respect to the real axis, and has a single limit point $+\infty$. Moreover, the spectrum is localized in a certain way in the right half-plane, the location zone depends on the dynamic viscosity of the fluid.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref