Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Оценки устойчивости решений некоторых обратных задач для интегро-дифференциальных уравнений, с. 75-82В статье исследуются вопросы устойчивости решений обратных задач для двух интегро-дифференциальных уравнений гиперболического типа. Теоремы существования и единственности решений этих задач, в малом, были получены и опубликованы автором ранее. Поэтому в данной работе рассматриваются исключительно вопросы устойчивости этих решений. В теореме 1 доказывается условная устойчивость решения обратной задачи об определении ядра интеграла для интегро-дифференциального уравнения
$$u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\, d\tau, \qquad (x,t)\in \mathbb{R}\times \mathbb{R}_+,$$ с начальными данными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta(x)$ и по дополнительной информации о решении прямой задачи $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t).$ С этой целью обратная задача заменяется эквивалентной системой интегральных уравнений относительно неизвестных функций. Для доказательства теоремы применяется метод последовательных приближений. Далее, используются метод оценок интегральных уравнений и неравенство Гронуолла.
Аналогично доказываемая теорема 2 посвящается оценке условной устойчивости решения обратной задачи об определении ядра интеграла для того же интегро-дифференциального уравнения, в ограниченной по $x$ области $x\in(0,l),$ с начальными $u\big|_{t=0}=0,$ $u_t\big|_{t=0}=\delta'(x)$ и граничными условиями $(u_x-hu)\big|_{x=0}=0,$ $(u_x+Hu)\big|_{x=l}=0$, $t>0$. В этом случае дополнительная информация о решении прямой задачи задается в виде $u(0,t)=f(t)$, $t\geqslant 0$. Здесь $h,H$ - вещественные и конечные числа.
Evaluation of the stability of some inverse problems solutions for integro-differential equations, pp. 75-82The paper investigates the stability of inverse problems solutions for two integro-differential hyperbolic equations. Theorems of existence and uniqueness of these solutions (in the small) have been obtained and published earlier by author. Thus only stability problems of these solutions are considered in this paper. In Theorem 1 we prove conditional stability of the solution of the following inverse problem: determine the kernel of the integral for integro-differential equation
$$u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\, d\tau, \qquad (x,t)\in \mathbb{R}\times \mathbb{R}_+,$$
with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta(x),$ and additional information about the direct problem solution $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t).$ The inverse problem is replaced by an equivalent system of integral equations for the unknown functions. To prove the theorem the method of successive approximations is used. Next, the method of estimating the integral equations and Gronwall's inequality are used.
In a similar manner we prove Theorem 2. It is devoted to estimating the conditional stability of the solution of kernel determination problem for the same integro-differential equation in a bounded domain with respect to $x,$ $x\in(0,l),$ with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta'(x),$ and boundary conditions $(u_x-hu)\big|_{x=0}=0$, $(u_x+Hu)\big|_{x=l}=0$, $t>0$. In this case the additional information about the direct problem solution is given as $u(0,t)=f(t)$, $t\geqslant0$. Here $h$ and $H$ are finite real numbers.
-
Работа посвящена связи параллельных и последовательных вычислений. С одной стороны, рассматривается класс словарных предикатов, основанных на последовательных вычислениях, ограниченных по памяти константами и имеющих полиномиальную временную сложность. С другой стороны, рассматривается класс словарных предикатов, вычислимых на параллельных альтернирующих машинах за логарифмическое время. Доказано совпадение соответствующих классов. Предложено направление использования полученных результатов для взаимного преобразования и сочетания вычислений на молекулярных биоподобных последовательных машинах и параллельных вычислениях на векторно-матричных компьютерах. Предполагаемые области применения: обработка изображений в реальном масштабе времени для задач управления, анализ больших текстов и других больших данных.
словарные предикаты, параллельные вычисления, последовательные вычисления, большие данные, вычислительная сложность, биоподобные компьютеры, векторно-матричные компьютеры, альтернированиеThe work is devoted to the connection between parallel and sequential computing. On the one hand, we consider a class of word predicates based on sequential calculations, limited in memory by constants and having polynomial time complexity. On the other hand, we consider a class of word predicates that are computable on parallel alternating machines in logarithmic time. The coincidence of the corresponding classes is proven. The direction of using the obtained results for mutual transformation and combination of calculations on molecular biosimilar sequential machines and parallel calculations on vector-matrix computers is proposed. Intended applications: real-time image processing for control tasks, analysis of large texts and other big data.
-
Онлайн-помощник для навигации в веб, с. 116-131Задачи поиска релевантной информации создают значительные трудности для пользователей из-за огромного объема данных, доступных в интернет. Эти трудности связаны с известной проблемой информационной перегрузки. В этой работе мы предлагаем онлайн-веб-помощник под названием OWNА. Мы разработали полностью интегрированную платформу для выработки рекомендаций в режиме реального времени, основанную на методах анализа журналов использования веб. Наша работа начинается с подготовки исходных данных, а затем извлечения полезной информации, которая помогает построить базу знаний, а также присваивает определенный вес определенным факторам. Эксперименты показывают преимущества предложенной модели по сравнению с альтернативными подходами.
веб-майнинг, веб-персонализация, прогнозирование ссылок, анализ использования веб, рекомендательные системы, веб-журнал, помощник веб-навигации
Online web navigation assistant, pp. 116-131The problem of finding relevant data while searching the internet represents a big challenge for web users due to the enormous amounts of available information on the web. These difficulties are related to the well-known problem of information overload. In this work, we propose an online web assistant called OWNA. We developed a fully integrated framework for making recommendations in real-time based on web usage mining techniques. Our work starts with preparing raw data, then extracting useful information that helps build a knowledge base as well as assigns a specific weight for certain factors. The experiments show the advantages of the proposed model against alternative approaches.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.