Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Обсуждаются вопросы построения допустимых управлений в одной задаче оптимального управления нелинейной динамической системой при наличии ограничений на ее текущее фазовое состояние. Рассматриваемая динамическая система описывает управляемое движение ракеты-носителя от точки старта до момента ее выхода на заданную околоземную эллиптическую орбиту. Задача заключается в построении программного управления, которое обеспечивает выведение ракетой-носителем на орбиту полезной нагрузки максимальной массы и выполнение дополнительных ограничений на текущее фазовое состояние системы. Дополнительные ограничения обусловлены необходимостью учитывать величины скоростного напора, углов атаки и скольжения при движении ракеты в плотных слоях атмосферы и осуществлять падение ее отделяемых частей в заданные районы на земной поверхности. Для ракет-носителей ряда классов такая задача равносильна нелинейной задаче быстродействия с фазовыми ограничениями. Предлагаются и численно исследуются два алгоритма построения в этой задаче допустимых управлений, обеспечивающих выполнение указанных дополнительных фазовых ограничений. Методологическую основу одного алгоритма составляет применение некоторого прогнозирующего управления, которое априори строится в задаче быстродействия без учета в ней дополнительных ограничений, а другого - использование специальных режимов управления. Приводятся результаты численного моделирования.
динамическая система, итерационный метод, нелинейная управляемая система, оптимальное управление, прогнозирующее управление, задача быстродействия, фазовые ограничения, допустимое управлениеThe questions of constructing admissible controls in a problem of optimal control of a nonlinear dynamic system under constraints on its current phase state are discussed. The dynamic system under consideration describes the controlled motion of a carrier rocket from the launching point to the time when the carrier rocket enters a given elliptic earth orbit. The problem consists in designing a program control for the carrier rocket that provides the maximal value of the payload mass led to the given orbit and the fulfillment of a number of additional restrictions on the current phase state of the dynamic system. The additional restrictions are due to the need to take into account the values of the dynamic velocity pressure, the attack and slip angles when the carrier rocket moves in dense layers of the atmosphere. In addition it is required to provide the fall of detachable parts of the rocket into specified regions on the earth surface. For carrier rockets of some classes, such a problem is equivalent to a nonlinear time-optimal problem with phase constraints. Two algorithms for constructing admissible controls ensuring the fulfillment of additional phase constraints are suggested. The numerical analysis of these algorithms is performed. The methodological basis of one algorithm is the application of some predictive control, which is constructed without taking into account the constraints above. Another algorithm is based on special control modes. The results of numerical modeling are presented.
-
Бифуркационное исследование перехода к хаосу в колебательной системе движения пластинки в жидкости, с. 3-18Рассматривается модель хаотического движения пластинки в вязкой жидкости, описываемая колебательной системой трех обыкновенных дифференциальных уравнений с квадратичной нелинейностью. В ходе бифуркационного исследования особых точек системы построены карты типов особых точек и найдено уравнение поверхности в пространстве параметров диссипации и циркуляции, на которой происходит бифуркация Андронова-Хопфа рождения предельного цикла. При дальнейшем изменении параметров вблизи поверхности Андронова-Хопфа найдены каскады бифуркаций удвоения периода цикла Фейгенбаума и субгармонические каскады Шарковского, заканчивающиеся рождением цикла периода три. Получены выражения для седловых чисел седлоузла и двух седлофокусов и построены их графики в пространстве параметров. Показано, что в системе реализуются гомоклинические каскады бифуркаций при разрушении гомоклинических траекторий седлофокусов. Существование гомоклинических траекторий седлофокусов доказано численно-аналитическим методом. Графики старшего показателя Ляпунова и бифуркационные диаграммы показывают, что при изменении коэффициентов диссипации система в несколько этапов переходит к хаосу.
движение тела в жидкости, особая точка, предельный цикл, гомоклиническая траектория, каскад бифуркаций, аттрактор, хаос, старший показатель Ляпунова
Bifurcation study of transition to chaos in the oscillatory system of motion of a plate in a liquid, pp. 3-18We consider the model of chaotic motion of a plate in a viscous fluid, described by an oscillatory system of three ordinary differential equations with a quadratic nonlinearity. In the course of the bifurcation study of singular points of the system, maps of the types of singular points are constructed and a surface equation is found in the space of dissipation and circulation parameters on which the Andronov-Hopf bifurcation of the limit cycle creation takes place. With a further change in the parameters near the Andronov-Hopf surface, cascades of the period doubling doubling of the Feigenbaum cycle and the Sharkovsky subharmonic cascades, ending with the creation of a cycle of period three, are found. Expressions are obtained for saddle numbers of the saddle-node and two saddle-foci and their plots are plotted in the parameter space. It is shown that homoclinic cascades of bifurcations are realized in the system with the destruction of homoclinic trajectories of saddle-foci. The existence of homoclinic trajectories of saddle-foci is proved by a numerical-analytical method. The graphs of the largest Lyapunov exponent and the bifurcation diagrams show that when the dissipation coefficients change, the system switches to chaos in several stages.
-
В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.
нелокальные краевые задачи, априорная оценка, нестационарное уравнение конвекции-диффузии, дифференциальное уравнение дробного порядка, дробная производная КапутоIn the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of $O(h^2+\tau^2)$.
-
Для динамической системы, подверженной воздействиям управления и помехи и содержащей последействие в управляющих силах, рассматривается задача об управлении с оптимальным гарантированным результатом для показателя качества, представляющего собой евклидову норму совокупности отклонений движения системы в заданные моменты времени от заданных целей. На основе функциональной трактовки, опирающейся на своеобразный прогноз движений, исходная задача сводится к вспомогательной дифференциальной игре для системы без запаздывания и с терминальной платой. Функция цены этой игры вычисляется на базе конструкции выпуклых сверху оболочек вспомогательных функций из метода стохастического программного синтеза, оптимальные стратегии строятся методом экстремального сдвига на сопутствующие точки. Рассматриваются иллюстрирующие примеры, приводятся результаты численных экспериментов.
For a dynamical system under control and disturbances, and with delay in control, the problem of control with the optimal guaranteed result is considered for a quality index which is the Euclidean norm of the set of deviations of a system motion at the given instants from the given targets. On the basis of a functional treatment basing on a proper prediction of the motion the problem is reduced to an auxiliary differential game for a system without delay and with a terminal quality index. The value of this game is calculated from the construction of upper convex hulls of auxiliary functions from the method of stochastic program synthesis, optimal strategies are formed by the method of an extremal shift to the corresponding points. Illustrating examples and results of numerical experiments are presented.
-
Рассматривается динамическая система сдвигов в пространстве ℜ непрерывных функций, принимающих значения в полном метрическом пространстве (clos(Rn), ρcl) непустых замкнутых подмножеств в Rn. Расстояние между функциями в этом пространстве определяется с помощью аналога метрики Бебутова в пространстве вещественных функций, определенных и непрерывных на всей числовой оси. Показано, что для компактности замыкания траектории точки в ℜ достаточно, чтобы исходная функция была ограничена и равномерно непрерывна в метрике ρcl. Как следствие, доказано, что замыкание траектории рекуррентного движения или траектории почти периодического движения в ℜ компактно.
пространство многозначных функций с замкнутыми образами, динамическая система сдвигов, замыкание траектории.
Dynamical system of translations in the space of multi-valued functions with closed images, pp. 28-33In the work there is considered the dynamical system of translations in the space ℜ of continuous multi-valued functions with images in complete metric space (clos(Rn), ρcl) of nonempty closed subsets of Rn. The distance between such functions is measured by means of the metric analogous to the Bebutov metric constructed for the space of continuous real-valued functions defined on the whole real line. It is shown that for compactness of the trajectory’s closure in ℜ it is sufficient to have initial function bounded and uniformly continuous in the ρcl metric. As consequence, it is also proved that the trajectory’s closure of a recurrent or an almost periodic motion is compact in ℜ.
-
Решена задача о построении асимптотически устойчивых произвольно заданных программных движений уравновешенного гиростата относительно центра масс. Решение получено синтезом активного программного управления, приложенного к системе тел, и стабилизирующего управления по принципу обратной связи. Управление построено в виде точного аналитического решения в классе непрерывных функций. Задача решена на основе прямого метода Ляпунова теории устойчивости с использованием функций Ляпунова со знакопостоянными производными.
уравновешенный гиростат, соосные тела, программное движение, знакопостоянная функция, функция ЛяпуноваWe consider program motion of balanced gyrostat. We solve the problem of construction asimptotically stability program motion. The program motion can be any function. Control is received in the form the analytical solution. We solve the problem of stabilization by the direct Lyapunov’s method and the method of limiting functions and systems. In this case we can use the Lyapunov’s functions having constant signs derivatives.
-
О численном решении дифференциальных игр с нетерминальной платой в классах смешанных стратегий, с. 34-48Рассматривается антагонистическая линейно-выпуклая дифференциальная игра с показателем качества, оценивающим совокупность отклонений траектории движения в наперед заданные моменты времени от заданных целевых точек. Исследуется случай, когда не выполняется условие седловой точки в маленькой игре, также известное как условие Айзекса. Игра формализуется в классах смешанных стратегий управления игроков. Описывается численный метод для приближенного вычисления цены игры и построения оптимальных стратегий. Метод основывается на попятном построении выпуклых сверху оболочек вспомогательных программных функций. Приводятся результаты численных экспериментов на модельных примерах.
On numerical solution of differential games with nonterminal payoff in classes of mixed strategies, pp. 34-48A zero-sum linear-convex differential game with a quality index that estimates a set of deviations of a motion trajectory at given instants of time from given target points is considered. A case when the saddle point condition in a small game, also known as Isaac's condition, does not hold, is studied. The game is formalized in classes of mixed control strategies of players. A numerical method for approximate computation of the game value and optimal strategies is elaborated. The method is based on the recurrent construction of upper convex hulls of auxiliary program functions. The results of numerical experiments in model examples are given.
-
Рассматриваются постановка и тестовые решения задачи динамического взаимодействия твердых тел произвольной формы в рамках дискретно-элементного моделирования. При дискретизации используется описание тел произвольной формы, составленных из элементов-сфер, жестко связанных между собой. Агломераты строились на нескольких сетках с разной размерностью, что позволило оценить влияние параметров при построении агломератов сфер и гладкости получаемой поверхности. Представлена система уравнений движения агломерата сфер относительно глобальной системы координат, интегрирование которой выполняется на модифицированной схеме Верле. Силы взаимодействия между сферами определяются на основе контактной модели Герца-Миндлина с учетом вязкого демпфирования. Тестирование метода проводилось на задаче взаимодействия двух сфер. Вычислялись траектории движения сфер, представленные агломератом сферических частиц. Полученные результаты сравнивались со случаем движения и взаимодействия сфер в одночастичном приближении.
The paper deals with the statement of a problem of dynamic interaction of arbitrary solid bodies and its test solutions in the context of discrete element modeling. For discretization we use description of bodies with arbitrary shapes, composed of rigidly bound spheres. The clumps were built with different characteristics, which allowed to estimate their influence on the process of clump construction and the smoothness of obtained surface. A system of equations of motion relative to global axes for a clump of spheres is presented. The forces of interaction between the spheres are determined based on the Hertz-Mindlin contact model with due account for viscous damping. A problem of interaction of two spheres was chosen as a test case. Spheres' trajectories composed of clumps of spheres were calculated. The results were compared with the results for the case of motion and interaction of spheres in one-particle approximation.
-
В работе рассмотрена интегрируемая гамильтонова система на алгебре Ли $so(4)$ с дополнительным интегралом четвертой степени - интегрируемый случай Адлера-ван Мёрбеке. Рассмотрены классические работы, посвященные, с одной стороны, динамике твердого тела, содержащего полости, полностью заполненные идеальной жидкостью, совершающей однородное вихревое движение, а с другой стороны, изучению геодезических потоков левоинвариантных метрик на группах Ли. Приведены уравнения движения, функция Гамильтона, скобки Ли-Пуассона, функции Казимира и фазовое пространство рассматриваемого случая. В предыдущих работах начато исследование фазовой топологии интегрируемого случая Адлера-ван Мёрбеке: приводятся в явном виде спектральная кривая, дискриминантное множество, бифуркационная диаграмма отображения момента, предъявлены характеристические показатели для определения типа критических точек ранга 0 и 1 отображения момента. В данной работе излагается алгоритм построения торов Лиувилля. Рассмотрены примеры перестроек лиувиллиевых торов при пересечении бифуркационных кривых для перестроек одного тора в два и двух торов в два.
The Adler-van Moerbeke integrable case. Visualization of bifurcations of Liouville tori, pp. 532-539In this paper we consider an integrable Hamiltonian system on the Lie algebra $so(4)$ with an additional integral of the fourth degree - the Adler-van Moerbeke integrable case. We discuss classical works which explore, on the one hand, the dynamics of a rigid body with cavities completely filled with an ideal fluid performing a homogeneous vortex motion and, on the other hand, are devoted to the study of geodesic flows of left-invariant metrics on Lie groups. The equations of motion, the Hamiltonian function, Lie-Poisson brackets, Casimir functions and the phase space of the case under consideration are given. In previous papers, the investigation of the phase topology of the integrable Adler-van Moerbeke case was started: a spectral curve, a discriminant set and a bifurcation diagram of the moment map are explicitly shown, and characteristic exponents for determining the type of critical points of rank 0 and 1 of the moment map are presented. In this paper we present an algorithm for constructing Liouville tori. Examples are given of bifurcations of Liouville tori at the intersection of bifurcation curves for reconstructions of one torus into two tori and of two tori into two tori.
-
Рассматривается нелинейная управляемая система в конечномерном евклидовом пространстве, заданная на конечном промежутке времени. Изучается одна из основных задач математической теории управления - задача о сближении фазового вектора управляемой системы с компактным целевым множеством в фазовом пространстве в фиксированный момент времени. В этой работе в качестве целевого множества выбрано множество Лебега скалярной липшицевой функции, определенной на фазовом пространстве. Упомянутая задача о сближении тесно связана с многими важными и ключевыми задачами теории управления, в частности с задачей об оптимальном по быстродействию приведении управляемой системы на целевое множество. Из-за сложности задачи о сближении для нетривиальных управляемых систем аналитическое представление решений невозможно даже для относительно простых управляемых систем. Поэтому в настоящей работе мы изучаем прежде всего вопросы, связанные с конструированием приближенного решения задачи о сближении. Конструирование приближенного решения тем методом, который изложен в работе, связано прежде всего с конструированием интегральной воронки управляемой системы, представленной в так называемом «обратном» времени. К настоящему времени известно несколько алгоритмов конструирования разрешающего программного управления в задаче о сближении. Здесь представлен алгоритм построения управления, основанный на максимальном притяжении движения системы к множеству разрешимости задачи о сближении. В работе приведены примеры.
On reducing the motion of a controlled system to a Lebesgue set of a Lipschitz function, pp. 489-512We consider a nonlinear controlled system in a finite-dimensional Euclidean space defined on a finite time interval. One of the main problems of mathematical control theory is studied: the problem of approaching a phase vector of a controlled system with a compact target set in the phase space at a fixed time instant. In this paper, a Lebesgue set of a scalar Lipschitz function defined on the phase space is a target set. The mentioned approach problem is closely connected with many important and key problems of control theory and, in particular, with the problem of optimally reducing a controlled system to a target set. Due to the complexity of the approach problem for nontrivial controlled systems, an analytical representation of solutions is impossible even for relatively simple controlled systems. Therefore, in the present work, we study first of all the issues related to the construction of an approximate solution of the approach problem. The construction of an approximate solution by the method described in the paper is primarily concerned with the design of the integral funnel of the controlled system, presented in the so-called “reverse” time. To date, there are several algorithms for constructing a resolving program control in the approach problem. This paper presents an algorithm for constructing a control based on the maximum attraction of the system's motion to the solvability set of the approach problem. Examples are provided.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.