Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'countably additive measure.':
Найдено статей: 2
  1. Рассматриваются конструкции, связанные с представлением свободных $\sigma$-мультипликативных ультрафильтров широко понимаемых измеримых пространств. В основе построений находятся представления, связанные с применением открытых ультрафильтров в случаях кофинитной и косчетной топологий. Такие ультрафильтры сохраняются (как максимальные фильтры) при замене топологий соответственно алгеброй и $\sigma$-алгеброй, порожденных упомянутыми топологиями. В (основном) случае косчетной топологии устанавливается единственность $\sigma$-мультипликативного свободного ультрафильтра, составленного из непустых открытых множеств. Показано, что данное свойство сохраняется для $\sigma$-алгебр, содержащих косчетную топологию. Указаны две топологии пространства ограниченных конечно-аддитивных борелевских мер, для которых ультрафильтр непустых открытых множеств определяет одноэлементный нарост секвенциально замкнутого множества мер Дирака, возникающий при построении замыкания.

    Pytkeev E.G., Chentsov A.G.
    Some representations of free ultrafilters, pp. 345-365

    Constructions related to the representation of free $\sigma$-multiplicative ultrafilters of widely interpreted measurable spaces are considered. These constructions are based on the representations connected with the application of open ultrafilters for co-finite and co-countable topologies. Such ultrafilters are preserved (as maximal filters) under the replacement of topologies by algebra and $\sigma$-algebra generated by above-mentioned topologies, respectively. In (general) case of co-countable topology, uniqueness of $\sigma$-multiplicative free ultrafilter composed of nonempty open sets is established. It is demonstrated that the given property is preserved for $\sigma$-algebras containing co-countable topology. Two topologies of the space of bounded finitely additive Borel measures with the property of uniqueness of remainder for sequentially closed set of Dirac measures under the closure construction are stated.

  2. Вводится понятие криволинейного интеграла Римана-Стилтьеса, доказываются некоторые его свойства. Показано, что такой интеграл определяет знакопеременную меру на плоскости, указаны условия, при которых эта мера будет счётно-аддитивной.

    We introduce the notion of the line contour Riemann-Stiltjes integral and describe some of its properties. In particular, we show that this integral determines a signed measure on a plane, and specify the sufficient conditions for this measure to be countably additive.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref