Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Доказана теорема, вводящая эквивалентные определения для некоторых пределов сходящихся последовательностей в расширении Белла счетного дискретного пространства.
The theorem is proved which gives equivalent definitions of some limits of convergent sequence in Bell’s compactification of countable discrete space.
-
Граф частичных порядков, с. 3-12Любое бинарное отношение σ⊆X (где X - произвольное множество) порождает на множестве X2 характеристическую функцию: если (x,y)∈σ, то σ(x,y)=1, а иначе σ(x,y)=0. В терминах характеристических функций на множестве всех бинарных отношений множества X вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если X - конечное множество, то эта алгебраическая система - граф («граф графов»).
Показано, что если σ и τ - смежные отношения, то σ является частичным порядком тогда и только тогда, когда τ является частичным порядком. Исследованы некоторые особенности строения графа G(X) частичных порядков. В частности, если X состоит из n элементов, а T0(n) - это число помеченных T0-топологий, определенных на множестве X, то количество вершин в графе G(X) равно T0(n), а количество компонент связности равно T0(n-1).
Для всякого отношения частичного порядка σ определяется понятие его опорного множества S(σ), являющегося некоторым подмножеством множества X. Если X - конечное множество, а частичные порядки σ и τ принадлежат одной и той же компоненте связности графа G(X), то равенство S(σ)=S(τ) имеет место тогда и только тогда, когда σ=τ. Показано, что в каждой компоненте связности графа G(X) совокупность опорных множеств ее элементов является специфическим частично упорядоченным множеством относительно естественного отношения включения множеств.
The graph of partial orders, pp. 3-12Any binary relation σ⊆X (where X is an arbitrary set) generates a characteristic function on the set X2: if (x,y)∈σ, then σ(x,y)=1, otherwise σ(x,y)=0. In terms of characteristic functions on the set of all binary relations of the set X we introduced the concept of a binary reflexive relation of adjacency and determined the algebraic system consisting of all binary relations of a set and of all unordered pairs of various adjacent binary relations. If X is finite set then this algebraic system is a graph (“a graph of graphs”).
It is shown that if σ and τ are adjacent relations then σ is a partial order if and only if τ is a partial order. We investigated some features of the structure of the graph G(X) of partial orders. In particular, if X consists of n elements, and T0(n) is the number of labeled T0-topologies defined on the set X, then the number of vertices in a graph G(X) is T0(n), and the number of connected components is T0(n-1).
For any partial order σ there is defined the notion of its support set S(σ), which is some subset of X. If X is finite set, and partial orders σ and τ belong to the same connected component of the graph G(X), then the equality S(σ)=S(τ) holds if and only if σ=τ. It is shown that in each connected component of the graph G(X) the union of support sets of its elements is a specific partially ordered set with respect to natural inclusion relation of sets.
-
Пространство правильных функций и дифференциальное уравнение с обобщенными функциями в коэффициентах, с. 3-18Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.
A function defined on an open (finite, semi-finite, infinite) interval is called regulated if it has finite one-sided limits at each point of its domain. In the present paper we study spaces of regulated functions, in particular, their dense subsets. Our motivation is applications to differential equations. Namely, we consider the Cauchy problem for a scalar linear differential equation with coefficients, which are derivatives of regulated functions. We immerse the Cauchy problem into the space of the Colombeau generalized functions. If the coefficients are derivatives of step functions, we find explicit solution R(φμ,t) of the Cauchy problem (in terms of representatives); its limit as μ→+0 is defined to be the solution of the original problem. In this way, we obtain a densely defined (on the space of regulated functions) operator T, which associates the solution to a Cauchy problem with this problem. Next, using a well-known topological result on a continuous extension, we extend the operator T to the operator T defined on the entire space of regulated functions. We have given the explicit representation of solution of the Cauchy problem for the inhomogeneous differential equation. Illustrative examples are also offered.
-
Любое бинарное отношение $\sigma\subseteq X^2$ (где $X$ - произвольное множество) порождает на множестве $X^2$ характеристическую функцию: если $(x,y)\in\sigma,$ то $\sigma(x,y)=1,$ а иначе $\sigma(x,y)=0.$ В терминах характеристических функций на множестве всех бинарных отношений множества $X$ вводится понятие бинарного рефлексивного отношения смежности и определяется алгебраическая система, состоящая из всех бинарных отношений множества и из всех неупорядоченных пар различных смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф («граф графов»).
Показано, что если $\sigma$ и $\tau$ - смежные отношения, то $\sigma$ является рефлексивно-транзитивным отношением тогда и только тогда, когда $\tau$ является рефлексивно-транзитивным отношением. Исследованы некоторые особенности строения графа $G(X)$ рефлексивно-транзитивных отношений. В частности, если $X$ состоит из $n$ элементов, а $T_0(n)$ - это число помеченных $T_0$-топологий, определенных на множестве $X,$ то количество компонент связности равно $\sum_{m=1}^n S(n,m) T_0(m-1),$ где $S(n,m)$ - числа Стирлинга 2-го рода. $($Хорошо известно, что количество вершин в графе $G(X)$ равно $\sum_{m=1}^nS(n,m) T_0(m).)$Any binary relation $\sigma\subseteq X^2$ (where $X$ is an arbitrary set) generates on the set $X^2$ a characteristic function: if $(x,y)\in\sigma,$ then $\sigma(x,y)=1,$ otherwise $\sigma(x,y)=0.$ In terms of characteristic functions we introduce on the set of all binary relations of the set $X$ the concept of a binary reflexive relation of adjacency and determine an algebraic system consisting of all binary relations of the set and of all unordered pairs of various adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs’’).
It is shown that if $\sigma$ and $\tau$ are adjacent relations then $\sigma$ is a reflexive-transitive relation if and only if $\tau$ is a reflexive-transitive relation. Several structure features of the graph $G(X)$ of reflexive-transitive relations are investigated. In particular, if $X$ consists of $n$ elements, and $T_0(n)$ is the number of labeled $T_0$-topologies defined on the set $X,$ then the number of connected components is equal to $\sum_{m=1}^nS(n,m) T_0(m-1),$ where $S(n,m)$ are Stirling numbers of second kind. $($It is well known that the number of vertices in a graph $G(X)$ is equal to $\sum_{m=1}^nS(n,m) T_0(m).)$ -
Об обобщенной краевой задаче для управляемой системы с обратной связью и бесконечным запаздыванием, с. 167-185Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.
система управления с обратной связью, оптимальное решение, дробное дифференциальное включение, бесконечное запаздывание, мера некомпактности, уплотняющий оператор, неподвижная точка, топологическая степень
On a generalized boundary value problem for a feedback control system with infinite delay, pp. 167-185We consider a non-local boundary value problem for a feedback control system described by a semilinear functional-differential inclusion of fractional order with infinite delay in a separable Banach space. The general principle of existence of solutions to the problem in terms of the difference from zero of the topological degree of the corresponding vector field is given. We prove a concrete example (Theorem 6) of the implementation of this general principle. The existence of an optimal solution to the posed problem is proved, which minimizes the given lower semicontinuous quality functional.
-
Изучаются свойства простых идеалов в полукольцах непрерывных функций на топологических пространствах со значениями в единичном отрезке [0, 1]. Описаны максимальные идеалы полуколец непрерывных [0, 1]-значных функций. В терминах полуколец функций получены характеризации ряда свойств компактов. Показано, что теория идеалов в рассматриваемых полукольцах отличается от случая колец
непрерывных функций.The properties of the prime ideals in semirings of the continuous functions on topological spaces with values in [0, 1] are researches. Maximal ideals of the semirings of continuous [0, 1]-valued functions are described. The characterizations of the compacts are received in terms of semiring of the functions. It is shown that the theory of ideals in considered semirings differs from the case of rings of continuous functions.
-
О компактных T1-пространствах, с. 20-27Рассматриваются пространства, всякие подпространства которых компактны. Будем называть такие пространства наследственно компактными. В работе рассматриваются вопросы о существовании и способах построения наследственно компактных T1-топологий. Доказано существование 2τ попарно несравнимых наследственно компактных T1-топологий на бесконечном множестве X мощности τ. Получены характеристики наследственно компактных пространств. Доказано, что тихоновское произведение конечного числа наследственно компактных T1-пространств является наследственно компактным T1-пространством. Доказано, что тихоновское произведение бесконечного числа неодноточечных наследственно компактных T1-пространств не является наследственно компактным.
On compact T1-spaces, pp. 20-27We consider spaces, any subspaces of which are compact. We call such spaces hereditarily compact. The present work covers questions on the existence and methods of constructing hereditarily compact T1-topologies. We prove the existence of 2τ pairwise incomparable hereditarily compact T1-topologies on an infinite set $X$ of power τ. The characteristics of hereditarily compact spaces are obtained. It is proved that the Tychonoff product of a finite number of hereditarily compact T1-spaces is a hereditarily compact T1-space, but the Tychonoff product of an infinite number of nonsingleton hereditarily compact T1-spaces is not hereditarily compact
-
В данной статье исследуются специфические особенности соотношений между топологической и алгебраической структурами квазигрупп и луп. Исследуется измеримость подмножеств топологических квазигрупп и луп относительно инвариантных мер. Изучается семейство неизмеримых подмножеств в локально компактных недискретных лупах. Выясняется существование локально $\mu$-нулевых подмножеств, не являющихся $\mu$-нулевыми, в локально компактной левой квазигруппе, не являющейся $\sigma$-компактной. Исследуются факторпространства измеримых пространств на квазигруппах. Более того, изучаются однородные пространства квазигрупп, а также счетная отделимость подмножеств в них.
квазигруппа, топология, алгебра, однородное пространство, мера, измеримые пространства, факторпространствоIn this paper we study specific features of the relations between topological and algebraic structures of quasigroups and loops. We study the measurability of subsets of topological quasigroups and loops with respect to invariant measures. We study the family of non-measurable subsets in locally compact non-discrete loops. We find out the existence of locally $\mu $-zero subsets that are not $\mu $-zero in a locally compact left quasigroup that is not $\sigma $-compact. We study quotient spaces of measurable spaces on quasigroups. Moreover, we study homogeneous spaces of quasigroups and countable separability of subsets in them.
-
В 1976 году Альстер и Пшимусинский построили ненормальное вполне-регулярное сепарабельное топологическое пространство, удовлетворяющее первой аксиоме счетности и имеющее мощность $\aleph_1$. Они также доказали, что в предположении аксиомы Мартина и отрицании континуум-гипотезы нельзя построить подобный пример, который дополнительно кометризуем. Если ослабить условие кометризуемости до субметризуемости, то подобное утверждение доказать нельзя: в данной статье построен пример ненормального вполне-регулярного субметризуемого сепарабельного локально счетного топологического пространства, удовлетворяющего первой аксиоме счетности и имеющего мощность $\aleph_1.$
In 1976 K. Alster and T. Przymusinski constructed an example of nonnormal completely regular separable and first-countable topological space of cardinality $\aleph_1$. Also they proved a theorem which implies that under Martin's Axiom with negation of continuum hypothesis there is no similar example, which is additionally cometrizable. If we weaken the cometrizability condition to submetrizability, then the similar statement can not be proved: here we construct an example of nonnormal completely regular submetrizable separable first-countable locally countable space of cardinality $\aleph_1.$
-
Представлена полная аналитическая классификация атомов гиростата Ковалевской–Яхья, возникающих в критических точках ранга 1. Найдены все разделяющие значения гиростатического момента при классификации диаграмм Смейла–Фоменко. Разработан "конструктор" графов Фоменко, применение которого дало полное описание грубой топологии этого интегрируемого случая. Доказано, что имеется девять групп эквивалентных молекул (без меток), содержащих 22 устойчивых графа и 6 неустойчивых по отношению к количеству критических окружностей на критических уровнях.
We present the complete analytical classification of the atoms arising at the critical points of rank 1 of the Kowalevski–Yehia gyrostat. To classify the Smale–Fomenko diagrams, all separating values of the gyrostatic momentum are found. We present a kind of constructor of the Fomenko graphs; its application gives the complete description of the rough topology of this integrable case. It is proved that there exists exactly nine groups of identical molecules (not considering the marks). These groups contain 22 stable types of graphs and 6 unstable ones with respect to the number of critical circles on the critical levels.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.