Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'differential inclusions':
Найдено статей: 20
  1. Получены необходимые и достаточные условия выживаемости дифференциальной системы с последействием и дифференциального включения с последействием. Получены достаточные условия положительной инвариантности множества для системы (включения) с последействием.

    Necessary and sufficient conditions of viability of differential systems with aftereffect and differential inclusions with aftereffect are received. Sufficient conditions of positive invariance of set for systems (inclusions) with aftereffect are received.

  2. В статье рассматриваются приближенные решения неантагонистических дифференциальных игр. Приближенное равновесие по Нэшу может быть построено по заданному решению вспомогательной стохастической игры с непрерывным временем. Мы рассматриваем случай, когда динамика вспомогательной игры задается марковской цепью с непрерывным временем. Для этой игры функция цены определяется решением системы обыкновенных дифференциальных включений. Таким образом, мы получаем конструкцию приближенного равновесия по Нэшу с выигрышами игроков, близкими к решениям системы обыкновенных дифференциальных включений. Также предложен способ построения марковской игры с непрерывным временем, аппроксимирующей исходную игру.

    The paper is concerned with approximate solutions of nonzero-sum differential games. An approximate Nash equilibrium can be designed by a given solution of an auxiliary continuous-time dynamic game. We consider the case when dynamics is determined by a Markov chain. For this game the value function is determined by an ordinary differential inclusion. Thus, we obtain a construction of approximate equilibria with the players' outcome close to the solution of the differential inclusion. Additionally, we propose a way of designing a continuous-time Markov game approximating the original dynamics.

  3. Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.

    Afanasova M.S., Obukhovskii V.V., Petrosyan G.G.
    On a generalized boundary value problem for a feedback control system with infinite delay, pp. 167-185

    We consider a non-local boundary value problem for a feedback control system described by a semilinear functional-differential inclusion of fractional order with infinite delay in a separable Banach space. The general principle of existence of solutions to the problem in terms of the difference from zero of the topological degree of the corresponding vector field is given. We prove a concrete example (Theorem 6) of the implementation of this general principle. The existence of an optimal solution to the posed problem is proved, which minimizes the given lower semicontinuous quality functional.

  4. Дифференциальные включения типа среднего поля возникают в рамках теории управления средним полем при овыпуклении правой части. Мы исследуем случай, когда правая часть дифференциального включения зависит от положения агента и от распределения всех агентов полунепрерывно. Основной результат статьи состоит в доказательстве существования и стабильности решений дифференциальных включений типа среднего поля. Также мы показываем полунепрерывную снизу зависимость функции цены задачи оптимального управления средним полем от начального состояния и параметра.

    Mean field type differential inclusions appear within the theory of mean field type control through the convexification of a right-hand side. We study the case when the right-hand side of a differential inclusion depends on the state of an agent and the distribution of agents in an upper semicontinuous way. The main result of the paper is the existence and the stability of the solution of a mean field type differential inclusion. Furthermore, we show that the value function of the mean field type optimal control problem depends on an initial state and a parameter semicontinuously.

  5. Построена метрика в пространстве clos(Rn) всех непустых замкнутых (необязательно ограниченных) подмножеств Rn. Сходимость последовательности множеств в этой метрике оказывается равносильной сходимости в метрике Хаусдорфа последовательности пересечений этих множеств с центрированными в нуле шарами любого положительного радиуса, дополненных соответствующими сферами. В этой метрике доказана полнота пространства clos(Rn) и замкнутость подпространства всех непустых замкнутых выпуклых подмножеств Rn. Получены условия равносильности сходимости по предложенной метрике и сходимости по метрикам Хаусдорфа и Хаусдорфа–Бебутова. Полученные результаты могут применяться в задачах управления, теории дифференциальных включений.

    Zhukovskiy E.S., Panasenko E.A.
    On one metric in the space of nonempty closed subsets of Rn, pp. 15-25

    In the work, there is presented a new metric in the space clos(Rn) of all nonempty closed (not necessarily bounded) subsets of Rn. The convergence of sets in this metric is equivalent to convergence in the Hausdorff metric of the intersections of the given sets with the balls of any positive radius centered at zero united then with the corresponding spheres. It is proved that, with respect to the metric considered, the space clos(Rn) is complete, and its subspace of nonempty closed convex subsets of Rn is closed. There are also derived the conditions that guarantee the equivalence of convergence in this metric to convergence in the Hausdorff metric, and to convergence in the Hausdorff–Bebutov metric. The results obtained can be applied to studying control problems and differential inclusions.

  6. В работе предложено обобщение теоремы Надлера о неподвижных точках для многозначных отображений действующих в метрических пространствах. Полученный результат позволяет изучать существование неподвижных точек у многозначных отображений, которые не обязательно являются сжимающими, и даже непрерывными, относительно метрики Хаусдорфа, и образами которых могут быть произвольные множества соответствующего метрического пространства. Упомянутый результат можно использовать для исследования дифференциальных и функционально-дифференциальных уравнений с разрывами, а также включений, правые части которых порождены многозначными отображениями с произвольными образами. Во второй части работы, в качестве приложения, получены условия существования и продолжаемости решений задачи Коши для дифференциального включения с некомпактной правой частью в пространстве Rn.

    A generalization of the Nadler fixed point theorem for multi-valued maps acting in metric spaces is proposed. The obtained result allows to study the existence of fixed points for multi-valued maps that have as images any arbitrary sets of the corresponding metric space and are not necessarily contracting, or even continuous, with respect to the Hausdorff metric. The mentioned result can be used for investigating differential and functional-differential equations with discontinuities and inclusions generated by multi-valued maps with arbitrary images. In the second part of the paper, as an application, conditions of existence and continuation of solutions to the Cauchy problem for a differential inclusion with noncompact in Rn right-hand side are derived.

  7. Работа посвящена дифференциальным включениям (д.в.) на конечном промежутке времени. Обсуждаются вопросы, касающиеся вычисления множеств достижимости д.в. Как правило, множества достижимости не поддаются эффективному аналитическому описанию. В то же время часто возникает потребность в их вычислении. Довольно часто она появляется, например, в теории управления, стимулируя развитие методов и алгоритмов приближенного вычисления множеств достижимости.

    The paper is devoted to differential inclusions (DI) on finite time intervals. We consider some questions of computation of attainable sets for DI. The above sets are rarely describable analytically in an effective way though, often, there is a necessity for their computation, for example, in control theory, in which the above computation is a stimulus to develop methods and algorithms used to approximately compute attainable sets.

  8. Исследуются задачи о равновесии трансверсально-изотропной пластины с жесткими включениями. Предполагается, что пластина деформируется в рамках гипотез классической теории упругости. Задачи формулируются в виде минимизации функционала энергии пластины на выпуклом и замкнутом подмножестве пространства Соболева. Установлено, что предельный переход по геометрическому параметру в задачах о равновесии пластины с объемным включением приводит к задаче о пластине с тонким жестким включением. Исследован также случай отслоения тонкого жесткого включения - когда трещина в пластине расположена вдоль одного из берегов включения. В задаче о пластине с отслоившимся тонким включением на трещине задается нелинейное условие непроникания. Это условие имеет вид неравенства (типа Синьорини) и описывает взаимное непроникание противоположных берегов трещины. Для задачи с отслоившимся включением, при достаточной гладкости решения, установлена эквивалентность вариационной и дифференциальной формулировок. Также получены соотношения, описывающие контакт противоположных берегов трещины. Относительно каждой из рассмотренных вариационных задач установлена однозначная разрешимость.

    We study the equilibrium problem of a transversely isotropic plate with rigid inclusions. It is assumed that the plate deforms under hypotheses of classical elasticity. The problems are formulated as the minimization of the plate energy functional on the convex and closed subset of the Sobolev space. It is established that, as the geometric parameter (the size) of the volume inclusion tends to zero, the solutions converge to the solution of an equilibrium problem of a plate with a thin rigid inclusion. Also the case of the delamination of an inclusion is investigated when a crack in the plate is located along one of the inclusion edges. In the problem of a plate with a delaminated inclusion the nonlinear condition of nonpenetration is given. This condition takes the form of a Signorini-type inequality and describes the mutual nonpenetration of the crack edges. For the problem with a delaminated inclusion, the equivalence of variational and differential statements is proved provided a sufficiently smooth solution. For each considered variation problem, unique solvability is established.

  9. Изучаются статистические характеристики множества достижимости A(t,σ,X) управляемой системы

    ẋ = f(ht,x,u), (t,σ,x,u) ∈ R × Σ × Rn × Rm, (1)

    которая параметризована с помощью топологической динамической системы (Σ,ht). Получены оценки снизу таких характеристик, как относительная частота поглощения, верхняя и нижняя относительные частоты поглощения множества достижимости системы (1) заданным множеством M, а также достаточные условия статистической инвариантности множества M относительно управляемой системы. Исследуются условия, которым должна удовлетворять система (1) и множество X, чтобы для заданных σΣ и χ0 ∈ (0, 1] относительная частота поглощения множества достижимости A(t,σ,X) системы (1) множеством M была не менее χ0. Результаты работы иллюстрируются на примере управляемой системы, которая описывает периодические процессы в химическом реакторе.

     

    We investigate the statistical characteristics of attainability set A(t,σ,X) of control system

    ẋ = f(ht,x,u), (t,σ,x,u) ∈ R × Σ × Rn × Rm, (1)

    which is parametrized by means of topological dynamic system (Σ,ht). We obtained the lower estimations for such characteristics as the relative frequency of containing, the upper and lower relative frequencies of containing of attainability set of the system (1) in the given set M as well as new sufficient conditions of statistical invariance of the set M with respect to control system. We received the conditions for system (1) and set X at which for given σ ∈ Σ и χ0 ∈ (0, 1] the relative frequency of containing of attainability set A(t,σ,X) of systems (1) in the set M not less χ0. Results of the work are illustrated by the example of control system which describes periodic processes in a chemical reactor.

     

  10. Для управляемых систем со случайными параметрами исследуются свойства статистической инвариантности и статистически слабой инвариантности, выполненные с вероятностью единица. Получены достаточные условия инвариантности заданного множества относительно управляемой системы, выраженные в терминах функций Ляпунова и динамической системы сдвигов. Доказано обобщение теоремы С.А. Чаплыгина о дифференциальных неравенствах и получены условия существования верхнего решения для задачи Коши с кусочно непрерывной по t правой частью без предположения единственности решения.

    We investigate the properties of statistical invariance and statistically weak invariance with probability one for control systems with random parameters. We obtain the sufficient conditions for the invariance of the given set with respect to the control system formulated in terms of Lyapunov functions and the dynamical system of shifts. We prove the extension for the theorem of S.A. Chaplygin about differential inequalities and obtain the conditions of existence for the upper solution of Cauchy problem with piecewise continuous on t right-hand part without assumption of uniqueness of solution.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref