Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'dynamical effects':
Найдено статей: 24
  1. Изучается задача о воздействии двухчастотных квазипериодических возмущений на системы, близкие к произвольным нелинейным двумерным гамильтоновым в случае, когда соответствующие возмущенные автономные системы имеют двойной предельный цикл. Ее решение имеет важное значение как для теории синхронизации колебаний, так и для теории бифуркаций динамических систем. В случае соизмеримости собственной частоты невозмущенной системы с частотами квазипериодического возмущения имеет место резонанс. Выводятся усредненные системы, позволяющие установить структуру резонансной зоны, то есть описать поведение решений в окрестностях индивидуальных резонансных уровней. Исследование этих систем позволяет установить возможные бифуркации, возникающие при отклонении резонансного уровня от уровня невозмущенной системы, порождающего двойной предельный цикл в возмущенной автономной системе. Полученные теоретические результаты применяются при исследовании двухчастотного квазипериодически возмущенного уравнения маятникового типа и иллюстрируются при помощи численных вычислений.

    The problem of the effect of two-frequency quasi-periodic perturbations on systems close to arbitrary nonlinear two-dimensional Hamiltonian ones is studied in the case when the corresponding perturbed autonomous systems have a double limit cycle. Its solution is important both for the theory of synchronization of nonlinear oscillations and for the theory of bifurcations of dynamical systems. In the case of commensurability of the natural frequency of the unperturbed system with frequencies of quasi-periodic perturbation, resonance occurs. Averaged systems are derived that make it possible to ascertain the structure of the resonance zone, that is, to describe the behavior of solutions in the neighborhood of individual resonance levels. The study of these systems allows determining possible bifurcations arising when the resonance level deviates from the level of the unperturbed system, which generates a double limit cycle in a perturbed autonomous system. The theoretical results obtained are applied in the study of a two-frequency quasi-periodic perturbed pendulum-type equation and are illustrated by numerical computations.

  2. Рассматриваются вопросы, связанные с решением аддитивной задачи последовательного обхода множеств с ограничениями предшествования и функциями стоимости, допускающими зависимость от списка заданий. В качестве базового метода используется широко понимаемое динамическое программирование (ДП), дополняемое в случае задач ощутимой размерности декомпозициями семейства заданий и преобразованием параметров исходной задачи. Возможные применения связаны, в частности, с задачей управления инструментом при фигурной листовой резке деталей на машинах с ЧПУ. В этой задаче важным обстоятельством является учет условий предшествования, имеющих, в частности, следующий смысл: в случае детали с отверстиями резка каждого из внутренних контуров (отвечающих отверстиям) должна предшествовать резке внешнего контура. Сам критерий качества в данной задаче, как правило, является аддитивным. Другой тип ограничений касается избежания термических деформаций деталей. При использовании подхода с применением штрафов за нарушение условий, связанных с эффективным отводом тепла при выполнении врезки, возникают функции стоимости, допускающие зависимость от списка заданий, выполненных на текущий момент времени. Заметим, что в другой прикладной задаче, а именно в задаче о демонтаже радиационно опасных объектов, возникают функции стоимости с зависимостью от списка заданий, не выполненных на данный момент (а, следовательно, касающихся недемонтированных объектов). В итоге мы приходим к очень общей задаче с ограничениями предшествования и функциями стоимости с зависимостью от списка заданий. Применяемая в случае ощутимой размерности декомпозиция с последующей реализацией ДП требует, с одной стороны, разработки методов кластеризации, а, с другой, построения адекватной конструкции распределения глобальных условий предшествования по кластерам. В теоретической части работы обсуждается случай двух кластеров, который позволяет охватить единой схемой целый ряд практически интересных задач диапазонного (в смысле размерности) типа. Указан алгоритм построения композиционного решения, включающий этап обучения кластеризации на основе жадного алгоритма. Данный «композиционный» алгоритм реализован на ПЭВМ; проведен вычислительный эксперимент.

    Issues related to solving the additive problem of sequential traversal of sets with precedence restrictions and cost functions that allow dependence on the list of tasks are considered. The basic method is a broadly understood dynamic programming (DP), supplemented in the case of problems of appreciable dimension by decompositions of the family of tasks and transformation of the parameters of the original problem. Possible applications are related, in particular, to the problem of tool control in figured sheet cutting of parts on CNC machines. In this problem, an important circumstance is taking into account the precedence conditions, which have, in particular, the following meaning: in the case of a part with holes, cutting of each of the internal contours (corresponding to the holes) should precede cutting of the external contour. The quality criterion itself in this problem, as a rule, is additive. Another type of constraints concerns avoiding thermal deformations of parts. When using the approach with penalties for violating the conditions associated with effective heat dissipation during cutting, cost functions arise that allow dependence on the list of tasks completed to date. Note that in another applied problem, namely, in the problem of dismantling radiation hazardous objects, cost functions arise with dependence on the list of tasks that have not been completed at the moment (and, consequently, concern the objects that have not been dismantled). As a result, we arrive at a very general problem with precedence constraints and cost functions with dependence on the list of tasks. The decomposition applied in the case of a noticeable dimensionality with subsequent implementation of the DP requires, on the one hand, the development of clustering methods, and, on the other, the construction of an adequate structure for distributing global precedence conditions among clusters. In the theoretical part of the work, the case of two clusters is discussed, which makes it possible to cover with a single scheme a number of practically interesting problems of a range (in terms of dimensionality) type. An algorithm for constructing a composite solution is indicated, including a stage of clustering training based on a greedy algorithm. This “composite” algorithm is implemented on a PC; a computational experiment was carried out.

  3. В работе исследуется стохастическая динамика двумерной модели Хиндмарш-Розе. В детерминированной модели Хиндмарш-Розе возможны параметрические зоны сосуществования различных устойчивых аттракторов - равновесий и предельных циклов. Появление колебаний больших амплитуд при воздействии случайных возмущений на систему в этих зонах объясняется наличием предельного цикла. Однако стохастическая генерация осцилляций больших амплитуд возможна и в параметрической зоне, где имеется лишь одно устойчивое равновесие. В данной статье рассматривается этот случай. При малых шумах случайные состояния концентрируются вблизи устойчивого равновесия. При увеличении интенсивности шума траектории уходят далеко от равновесия, совершая колебательные движения больших амплитуд в окрестности неустойчивого равновесия. Это явление подтверждается изменением плотности распределения случайных траекторий. Проводится анализ этого эффекта с помощью техники функций стохастической чувствительности. Предлагается метод оценки критических значений интенсивности шума.

    We study the stochastic dynamics of the two-dimensional Hindmarsh-Rose model. In the deterministic Hindmarsh-Rose model the parametric zones of coexistence of different stable attractors (equilibria and limit cycles) are possible. The emergence of high amplitude oscillations under the influence of random disturbances on the system in these zones is due to the presence of a limit cycle. However, the stochastic generation of high amplitude oscillations is possible in a parametric zone where the deterministic system has the only stable equilibrium. This article discusses this case. For a sufficiently low noise intensity values, random states concentrate near the stable equilibrium. With the increasing of the noise intensity, trajectories go far from the equilibrium making high amplitude oscillations in the neighborhood of the unstable equilibrium. This phenomenon is confirmed by changing of the probability distribution of random trajectories. This effect is analyzed using the stochastic sensitivity function technique. A method of estimation of critical values for noise intensity is proposed.

  4. Теория управления - активно развивающийся в настоящее время раздел современной математики. Класс задач, изучаемый в рамках этой теории, достаточно обширен и включает как вопросы, связанные с существованием решений, так и вопросы, связанные с эффективными способами построения управляющих воздействий. Один из подходов к решению задач управления при неполной информации был предложен в основополагающей статье Ю.С. Осипова, опубликованной в журнале «Успехи математических наук» в 2006 году. В дальнейшем этот подход, названный методом пакетов программ, получил развитие, в частности, в статьях, цитированных в настоящей работе. Указанный подход основан на подходящей модификации известного в теории позиционных дифференциальных игр метода неупреждающих стратегий (квазистратегий) для решения задач управления при неизвестном начальном состоянии. Как известно, квазистратегии, отражающие свойства вольтерровости программных реализаций управлений с обратной связью на соответствующие программные возмущения, ориентированы на исследование задач с известным начальным состоянием при наличии неизвестных динамических возмущений. В стандартных задачах управления с неполной информацией динамические возмущения, как правило, отсутствуют, а неполнота информации обусловлена дефицитом информации о начальном состоянии системы. Аналогом свойств неупреждаемости для задач с неизвестными начальными состояниями и стали пакеты программ. Следует отметить, что во всех предыдущих исследованиях, связанных с методом пакетов программ, рассматривались задачи наведения на одно-единственное целевое множество. В настоящей работе для линейной стационарной управляемой динамической системы рассмотрена задача гарантированного наведения на семейство целевых множеств в случае неполной информации о начальном состоянии. Установлен критерий разрешимости этой задачи, основанный на методе пакетов программ, и приведен иллюстрирующий пример.

    Control theory is a section of modern mathematics being actively developed at present time. The class of problems investigated within the framework of this theory is quite extensive and includes issues related to the existence of solutions as well as issues related to the effective methods for constructing controls. One of the approaches to solving control problems under lack of information was suggested by Yu.S. Osipov in the fundamental paper published in the Russian Mathematical Surveys in 2006. Later, this approach, called the method of program packages, was developed, in particular, in the articles cited in this paper. This approach is based on a suitable modification of the method of non-anticipatory strategies (quasi-strategies) for solving control problems with unknown initial states. As is known, quasi-strategies reflecting the Volterra properties of program realizations of closed-loop controls in corresponding program disturbances are oriented to the investigation of problems with known initial states under the presence of unknown dynamical disturbances. Such disturbances are usually absent in standard control problems with incomplete information and incompleteness of information is due to a lack of information about the initial state of the system. So, program packages became an analogue of the properties of nonanticipativeness for problems with unknown initial states. It should be noted that in all previous works related to the method of program packages, the guidance problems to one single target set were considered. In the present paper the guaranteed guidance problem to a collection of target sets under incomplete information about the initial state is considered for a linear autonomous control dynamical system. The criterion for the solvability of that problem is established. It is based on the method of program packages. An illustrative example is given.

  5. В работе рассматривается задача о малых движениях вязкой стратифицированной жидкости, частично заполняющей контейнер, который равномерно вращается вокруг оси, сонаправленной с действием силы тяжести. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Исходная начально-краевая задача сводится к задаче Коши для дифференциального уравнения первого порядка в некотором гильбертовом пространстве. После детального изучения свойств операторных коэффициентов доказана теорема о разрешимости полученной задачи Коши. На этой основе найдены достаточные условия существования решения начально-краевой задачи, описывающей эволюцию исходной гидросистемы.

    We study the problem of small motions of a viscous stratified fluid partially filling a container that uniformly rotates around an axis co-directed by gravity. The problem is studied on the basis of an approach related to the application of the so-called operator matrix theory. To this end, we introduce Hilbert spaces and some their subspaces, as well as auxiliary boundary value problems. The original initial-boundary value problem is reduced to the Cauchy problem for a first-order differential equation in some Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the solvability of the Cauchy problem. On this basis, we find sufficient conditions for the existence of a solution of the original initial-boundary value problem describing the evolution of the hydro-system.

  6. В статье рассматривается общий случай маршрутной задачи дискретной оптимизации, осложненной условиями предшествования; изучается влияние условий предшествования на вычислительную сложность решений таких задач методом динамического программирования. Особенность применяемого метода динамического программирования заключается в его «экономичности»: подзадачи, не соблюдающие условия предшествования и, следовательно, не участвующие в оптимальном решении, не рассматриваются, что позволяет сберечь и вычислительную мощность, и память.

    Этот метод c 2004 года используется А.Г. Ченцовым и его соавторами, но степень экономии ресурсов исследовалось мало. Мы предлагаем подход к решению этой проблемы, основанный на комбинаторном анализе числа подзадач, существенных в смысле условий предшествования. Применяя известные комбинаторные правила сложения и произведения, мы получили результат для важных частных случаев условий предшествования: а) «независимые» наборы условий предшествования; б) «цепь» условий предшествования - когда условия задают линейный порядок; в) случай, когда в графе предшествования нет неориентированных циклов, и исходящая степень любой вершины не превышает единицы. Последний случай представляет собой условия предшествования, встречающихся в практической задаче маршрутизации движений инструмента в машинах листовой резки и соответствует требованию вырезать внутренний контур прежде внешнего.

    В связи с более сложной структурой случая в) по сравнению с остальными для него вместо аналитической формулы представлен алгоритм; алгоритм реализован на языке C++, зависимость его вычислительной сложности от числа связанных условиями предшествования объектов имеет не более чем квадратичный порядок. В дальнейшем мы предполагаем расширить область применения нашего подхода до более общих вариантов условий предшествования. Отметим также, что наш подход не зависит от критерия оптимальности, соответственно, может применяться для анализа сложности решения методом динамического программирования в произвольных маршрутных задачах с условиями предшествования.

    We consider the general case of Precedence Constrained TSP (or a less general case of Sequential Ordering Problem) solved with a special kind of dynamic programming method that uses precedence constraints to significantly reduce the number of subproblems that must be solved to find the optimal solution of the original problem. Our aim is to quantify this reduction, which is necessary to clarify the influence of precedence constraints on computational complexity of dynamic programming solutions of such problems. This variety of the method of dynamic programming has been developed by A.G. Chentsov and his co-authors since 2004 but there was only one attempt at examining the influence of precedence constraints on complexity, which only described the influence of a single precedence constraint in the form of an “address pair” (sender, receiver).

    Our approach to studying the complexity of this method is essentially the combinatorial analysis of the number of subproblems that are feasible in the sense of abiding by precedence constraints. Using the well-known combinatorial principles, the rule of product and the rule of sum, we established the estimates of complexity reduction for the following cases: a) “independent” sets of precedence constraints; b) “chains” of precedence constraints, when the precedence constraints define a linear ordering on the objects bound by them; c) precedence constraints expressed by an acyclic directed graph with outdegree (the number of receivers per sender) at most one. The latter case of precedence constraints is the one encountered in real-life problems of optimizing the route of the cutter in various machines used to cut sheet material. Since this is the most complex case of the three analyzed, instead of an analytic formula, we had to develop an algorithm (which we implemented in C++) to quantify the reduction; the computational complexity of the algorithm is less than quadratic with respect to the number of objects constrained by the precedence constraints. We intend to develop our approach to treat other cases of precedence constraints, eventually reaching the general case. We would also like to note that our method is optimization criterion-agnostic and thus applicable to many kinds of TSP, as long as they are precedence constrained and solvable by dynamic programming; in fact, our approach may be used to analyze the complexity of the dynamic programming method solution of any discrete optimization problem that deals with ordering subject to precedence constraints.

  7. В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.

    In this paper we consider the reduction of Kirchhoff-Poisson equations related to the problem of rigid body motion under the action of potential and gyroscopic forces and also equations of the problem of rigid body motion taking into account the Barnett-London effect. For the above-mentioned problems, we obtain analogues of N. Kovalevski equations. In addition, for the above-mentioned problems we obtain two new particular solutions to the polynomial class of Steklov-Kovalevski-Goryachev reduced differential equations. The polynomial solution of the problem of gyrostat motion under the action of potential and gyroscopic forces is characterized by the following property: the squares of the second and the third vector component of angular velocity are quadratic polynomials of the first vector component that is an elliptic function of time. A polynomial solution of the equation of rigid body motion in a magnetic field (taking into account the Barnett-London effect) is characterized by the fact that the square of the second vector component of the angular velocity is the second-degree polynomial, while the square of the third component is the fourth-degree polynomial of the first vector component. The former is found as a result of an elliptic integral inversion.

  8. Критически обсуждаются различные способы определения иррегулярных и регулярных сил в звездных системах. Наиболее удовлетворительным кажется определение Эддингтона, согласно которому регулярная сила - это сила притяжения сплошной гравитирующей среды, получающейся «размешиванием» вещества по системе. Интерес представляет также определение регулярной силы как математического ожидания случайной силы. Подчеркивается, что время пересечения τc, характерное время действия регулярных сил, определяет темп коллективных процессов в системе. Существенно, что регулярные силы могут приводить и, как правило, приводят к бесстолкновительной стохастизации. В этой связи рассматривается квазиэнтропия, среднее по фазовому пространству значение произвольной выпуклой функции от крупнозернистой функции распределения. Максимум квазиэнтропии для невращающихся систем возможен только при изотропном распределении скоростей. Приводятся найденные Антоновым выражения для ее первой и второй вариаций. Если вторая вариация положительна хотя бы для некоторого изменения плотности, то это означает, что данное состояние системы не является наивероятнейшим. Отсюда следует, что эволюция вдоль последовательности политропных шаров невозможна без поступления в систему дополнительной энергии. Напоминается классификация видов фазового размешивания в бесстолкновительных системах.

    Кратко рассматривается проблема столкновительной релаксации в гравитирующих системах. Излагается подход к ее решению с точки зрения теории геодезических потоков с последующим усреднением по ансамблю, что требует знания закона распределения случайной силы. Чтобы избежать обрезания распределения Хольцмарка на малых прицельных расстояниях, использовано распределение случайной силы, найденное Петровской. В этом случае оказывается, что отношение эффективного времени стохастизации к времени пересечения пропорционально N/(ln N)½, где N>>1 - число тел в системе. Полученная временная шкала столкновительной эволюции практически совпадает с шкалой, ранее предложенной Генкиным.

    Various ways of definition of irregular (random) and regular (smoothed) forces in stellar systems are critically discussed. The most satisfactory is Eddington's one according to which the regular force is an attraction force of a continuous fluid resulting from spreading a stellar mass over a system. Also, a definition of the regular force as a mathematical expectation of a random force is of interest. It is emphasized that the crossing time, τc, a time scale of regular forces, characterizes the rate of collective processes in the system, including collisionless relaxation, that (as a rule) occurs in gravitating systems. The quasi-entropy, i.e., a result of averaging of an arbitrary convex function of a coarse-grained distribution function over the phase space, is discussed as a measure of collisionless stochastization. For non-rotating systems the maximum of quasi-entropy can be reached only for isotropic velocity distributions. Formulas for the first and second variations of quasi-entropy, found by Antonov, are given. If there exists the density variation so that the second variation of quasi-entropy is positive, then the present state of the system is not the most probable. It follows from this assertion that evolution along a sequence of polytropic spheres is not possible without some energy input to the system. We recall the classification of forms of the phase mixing in collisionless systems.

    The problem of collisional relaxation in gravitating systems is briefly discussed. We state the approach to its analysis on the basis of studying geodesic flows and the ensemble averaging as the next step, which requires the knowledge of distribution of a random force. To avoid truncation of Holtsmark's distribution at small impact parameters the distribution of random force by Petrovskaya was used. In that case the ratio of the effective stochastization time to the crossing time is proportional to N/(ln N)½, where N>>1 is the number of stars in the system. This evolutionary time scale is close to the one found earlier by Genkin.

  9. Дьяконова Т.А., Храпов С.С., Хоперсков А.В.
    Проблема граничных условий для уравнений мелкой воды, с. 401-417

    Обсуждается проблема выбора граничных условий в случае численного интегрирования уравнений мелкой воды на существенно неоднородном рельефе местности. При моделировании нестационарных течений поверхностных вод имеется динамическая граница, разделяющая жидкость и сухое дно. Для задач сезонных пойменных затоплений, ливневых паводков, выходов волн цунами на берег ситуация осложняется возникновением до- и сверхкритических режимов течений. Анализ использования различных способов задания условий для физических величин при достижении жидкости границы расчетной области показывает преимущества при использовании условий типа «водопад» при наличии сильных неоднородностей рельефа земной поверхности. При наличии водопада на границе расчетной области и неоднородности рельефа в окрестности границы может возникать участок, на котором формируется область критического течения с образованием гидравлического скачка, что существенно ослабляет влияние водопада на структуру потока вверх по течению.

    Dyakonova T.A., Khrapov S.S., Khoperskov A.V.
    The problem of boundary conditions for the shallow water equations, pp. 401-417

    The problem of choice of boundary conditions is discussed for the case of numerical integration of the shallow water equations on a substantially irregular relief. While modeling unsteady surface water flows there is a dynamic boundary that partitions liquid and dry bottom. The situation is complicated by the emergence of sub- and supercritical flow regimes for the problems of seasonal floodplain flooding, flash floods, tsunami landfalls. Analysis of the use of various methods of setting conditions for the physical quantities of liquid at the settlement of the boundary shows the advantages of using the waterfall type conditions in the presence of strong heterogeneities of landforms. When there is a waterfall on the border of computational domain and heterogeneity of the relief in the vicinity of the boundary, a portion may occur which is formed by the region of critical flow with the formation of a hydraulic jump, which greatly weakens the effect of the waterfall on the flow pattern upstream.

  10. В работе представлены результаты расчетного исследования локальной структуры восходящего газожидкостного потока в вертикальной трубе. Математическая модель основана на использовании двухжидкостного эйлерова подхода с учетом обратного влияния пузырьков на осредненные характеристики и турбулентность несущей фазы. Турбулентная кинетическая энергия жидкости рассчитывается с применением двухпараметрической изотропной модели турбулентности $k - \varepsilon$, модифицированной для двухфазных сред. Для описания динамики распределения пузырьков по размерам используются уравнения сохранения количества частиц для отдельных групп пузырьков с различными диаметрами для каждой фракции с учетом процессов дробления и коалесценции. Численно исследовано влияние изменения степени дисперсности газовой фазы, объемного расходного газосодержания, скорости дисперсной фазы на локальную структуру и поверхностное трение в двухфазном потоке. Сравнение результатов моделирования с экспериментальными данными показало, что разработанный подход позволяет адекватно описывать турбулентные газожидкостные течения в широком диапазоне изменения газосодержания и начальных размеров пузырьков.

    The results of numerical simulation of the structure of a two-phase flow of a gas-liquid bubble mixture in a vertical ascending flow in a pipe are presented. The mathematical model is based on the use of the two-fluid Eulerian approach taking into account the inverse influence of bubbles on averaged characteristics and turbulence of the carrying phase. The turbulent kinetic energy of a liquid is calculated using equations for the transfer of Reynolds stresses. To describe the dynamics of bubble size distribution, the equations of particle number conservation for individual groups of bubbles with different constant diameters for each fraction are used taking into account the processes of breakup and coalescence. The influence of changes in the degree of dispersion of the gas phase, volume flow gas content and the velocity of the dispersed phase on the local structure and surface friction in the two-phase flow is numerically investigated. Comparison of simulation results with experimental data has shown that the developed approach allows an adequate description of turbulent gas-liquid flows in a wide range of changes in gas content and initial bubble sizes.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref