Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.
Approximate calculation of amplitudes of cycles bifurcating in the presence of resonances, pp. 12-22The procedure of approximate calculation of amplitudes for periodic solutions bifurcating from rest points in the presence of resonance is studied for a class of dynamical systems. This class includes equations of spring beam oscillations located on elastic foundations, autonomous systems of ordinary differential equations, hydrodynamical systems etc. The methodological basis of the procedure is the Lyapunov-Schmidt method considered in the context of general theory of smooth SO(2)-equivariant Fredholm equations (in infinite dimensional Banach spaces). The topic of the paper develops and extends the earlier research of B.M Darinsky, Y.I. Sapronov, and V.A. Smolyanov.
-
В работе рассматривается краевая задача для нелинейного эволюционного уравнения в частных производных, приведенная в перенормированном виде. Данная краевая задача возникает в механике роторных систем и описывает поперечные колебания вращающегося ротора постоянного сечения из вязкоупругого материала, концы которого шарнирно закреплены. Изучен вопрос об устойчивости нулевого состояния равновесия, найдено критическое значение скорости вращения ротора, при превышении которого возникают незатухающие колебания. Найдены точные решения изучаемой краевой задачи в виде одномодовых по пространственной переменной и периодической по времени функций. Выведены условия устойчивости таких решений, а также в ряде случаев дан анализ условий устойчивости. В работе показано отсутствие многомодовых периодических по времени решений. Проанализированы базовые, но важные с прикладной точки зрения частные случаи данной нелинейной краевой задачи. Все результаты анализа нелинейной краевой задачи носят аналитический характер. Их вывод опирается на качественную теорию бесконечномерных динамических систем.
We consider a boundary-value problem for the nonlinear evolution partial differential equation, given in renormalized form. This problem appears in rotary system mechanics and describes the transverse vibrations of the rotating rotor of a constant cross-section from a viscoelastic material whose ends are pivotally fixed. The question of the stability of the zero equilibrium state is studied, the critical value of the rotor speed is found, above which continuous oscillations occur. Exact solutions of the boundary-value problem are found in the form of single-mode functions with respect to the spatial variable and functions periodic in time. The stability conditions for such solutions are derived, and in some cases an analysis of the stability conditions is given. The paper shows the absence of multimode time-periodic solutions. The basic and important (from an applied point of view) particular cases of this nonlinear boundary-value problem are analyzed. All the results of the analysis of a nonlinear boundary-value problem are analytical. Their conclusion is based on the qualitative theory of infinite-dimensional dynamical systems.
-
Изучается задача о малых движениях идеальной стратифицированной жидкости со свободной поверхностью, частично покрытой упругим льдом. Упругий лед моделируется упругой пластиной. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Начальная краевая задача сведена к задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. После подробного изучения свойств операторных коэффициентов, отвечающих возникшей системе уравнений, доказывается теорема о сильной разрешимости полученной задачи Коши на конечном интервале времени. На этой основе доказана также теорема о существовании решения и исходной начально-краевой задачи.
стратифицированная идеальная жидкость, упругий лед, начально-краевая задача, дифференциальное уравнение в гильбертовом пространстве, задача Коши, сильное решениеWe study the problem of small motions of an ideal stratified fluid with a free surface, partially covered with elastic ice. Elastic ice is modeled by an elastic plate. The problem is studied on the basis of an approach connected with application of the so-called operator matrices theory. To this end we introduce Hilbert spaces and some of their subspaces as well as auxiliary boundary value problems. The initial boundary value problem is reduced to the Cauchy problem for the differential second-order equation in Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the strong solvability of the Cauchy problem obtained on a finite time interval. On this basis, we find sufficient conditions for the existence of a strong (with respect to the time variable) solution of the initial-boundary value problem describing the evolution of the hydrosystem.
-
В статье рассматривается аналогия между двумя плоскими задачами механики сплошных сред: гидродинамическая задача о движении вязкой жидкости, заключенной между двумя вращающимися цилиндрами, и плоская задача теории упругости в напряжениях, создаваемых в трубе постоянным нормальным внешним давлением. В обеих задачах область решения - кольцо; в рамках настоящей работы рассмотрены два случая: концентрическое и эксцентрическое кольцо. В первой части статьи проведено построение аналогии для случая концентрического кольца, показано, что в этом случае решения рассматриваемых задач выражаются функциями одного и того же вида. Во второй части статьи представлена попытка построения прямой аналогии для случая эксцентрического кольца и обозначены возникающие проблемы. Исследование в третьей части статьи направлено на установление напряженного состояния в эксцентрическом кольце, соответствующего бигармонической функции напряжений, построенной по аналогии с изученной гидродинамической задачей с учетом условий однозначности смещений. В результате проведенного исследования можно сделать вывод о том, что аналогия между рассматриваемыми задачами может быть установлена, но только с учетом механических особенностей каждой из них. При этом в случае концентрического кольца наблюдается прямая аналогия.
вязкая жидкость, плоская задача теории упругости, кольцевая область, биполярные координаты, функция тока, функция напряженийThe article discusses an analogy between two plane problems of continuum mechanics: the hydrodynamic problem of the motion of a viscous fluid enclosed between two rotating cylinders, and the plane problem of the theory of elasticity in stresses created in a tube by a constant normal external pressure. In both problems, the solution domain is a ring; within the framework of this paper, two cases are considered: a concentric and an eccentric ring. In the first part of the article, an analogy is constructed for the case of a concentric ring; it is shown that in this case the solutions to the problems in question are expressed by functions of the same type. The second part of the article presents an attempt to build a direct analogy for the case of an eccentric ring and identifies the problems that arise. The third part of the article is aimed at establishing the stress state in the eccentric ring corresponding to the biharmonic stress function constructed by analogy with the hydrodynamic problem under study, taking into account the conditions for the single-valued displacements. As a result of the study, it can be concluded that an analogy between the problems under consideration can be established, but only taking into account the mechanical features of each of them. In the case of a concentric ring, there is a direct analogy.
-
Краевые задачи теории функции комплексных переменных эффективно используются при исследовании равновесия однородных упругих сред. Наиболее сложные системы краевых задач соответствуют случаю, когда упругое тело обладает анизотропными свойствами. Анизотропия среды приводит к появлению в краевых условиях функции сдвига, которая в общем случае нарушает аналитичность искомых функций. В работе проводится исследование систем краевых задач со сдвигом для аналитических векторов, соответствующих трем основным задачам теории упругости (первая, вторая и смешанная задачи). Системы аналитических векторов со сдвигом сводятся к равносильным системам из краевых задач Гильберта для аналитических функций, содержащих интегральные члены со слабой особенностью. Полученное общее решение основных краевых задач анизотропной теории упругости позволяет проверить указанные задачи на устойчивость относительно возмущений краевых условий и формы контура. Такое исследование актуально в связи с необходимостью применения приближенных численных методов к решению краевых задач со сдвигом. Основным результатом работы следует считать доказательство устойчивости систем векторных краевых задач со сдвигом для аналитических функций на пространстве Гёльдера, соответствующих основным задачам теории упругости для анизотропных тел относительно изменения краевых условий и формы контура.
Stability of mathematical models of the main problems of the anisotropic theory of elasticity, pp. 112-124The boundary problems of the complex-variable function theory are effectively used while investigating equilibrium of homogeneous elastic mediums. The most complicated systems of the boundary value problems correspond to the case when an elastic body exhibits anisotropic properties. Anisotropy of the medium results in the drift of boundary conditions of the function that in general disrupts analyticity of the functions of interest. The paper studies systems of the boundary value problems with drift for analytic vectors corresponding to the primal elastic problems (first, second and mixed problems). Systems of analytic vectors with drift are reduced to equivalent systems of Hilbert boundary value problems for analytic functions with weak singularity integrators. The obtained general solution of the primal boundary value problems for the anisotropic theory of elasticity allows us to check the above problems for stability with respect to perturbations of boundary value conditions and contour shape. The research is relevant as there is necessity to apply approximate numerical methods to the boundary value problems with drift. The main research result comes to be a proof of stability of the systems of the vector boundary value problems with drift for analytic functions on the H\"older space corresponding to the primal problems of the elastic theory for anisotropic bodies in the case of change in the boundary value conditions and contour shape.
-
Величину коэффициента фильтрации принято определять эмпирически в силу обусловленности его физическими и химическими свойствами среды и фильтрующейся жидкости. Однако, полученные экспериментальные данные могут существенно варьироваться в зависимости от приложенных нагрузок. В работе выдвигается новая гипотеза о линейной зависимости коэффициента фильтрации среды от первого инварианта тензора напряжений, возникших в области вследствие гидравлического напора на границе. В рамках этой гипотезы исследуется изменение коэффициента фильтрации области при плоской деформации. Возникновение на границе гидравлического напора ведет к возникновению в среде упругих возмущений. Так как скорость последних много больше скорости фильтрации жидкости, то изменение напряженного состояния области приведет к изменению порового пространства, а следовательно, и к изменению коэффициента фильтрации. Таким образом, исходная задача сводится к решению сначала классической задачи теории упругости, а именно к решению краевой задачи для функции Эри, а затем к определению непосредственно коэффициента фильтрации как решения краевой задачи для гармонического уравнения. В работе построен численный алгоритм решения гармонического и бигармонического уравнений, основанный на методе граничных элементов, который, в конечном счете, сводит исходную задачу к системе линейных алгебраических уравнений. Как показали численные результаты исследований, изменение коэффициента фильтрации некоторых материалов при рабочих нагрузках достигает в некоторых точках области 20 процентов. Особенно актуальны эти результаты при использовании труб, шлангов, водонапорных рукавов из различных полимерных материалов, стеклопластика, а также при эксплуатации гидротехнических и очистных сооружений. Изменение фильтрующей способности среды при малых упругих деформациях делает возможной при соответствующих давлениях фильтрацию даже в тех средах, которые обычно считаются для жидкости непроницаемыми. В работе приведены результаты численных экспериментов по исследованию коэффициента фильтрации полиуретана (гибкий поливочный шланг) и бутилкаучука. Построены графики искомых механических параметров. Расчеты выполнялись в программном пакете Maple.
коэффициент фильтрации, плоская деформация, напряжения, фильтрация, бигармоническое уравнение, гармоническое уравнение, численный алгоритм
Investigation of the filtration coefficient of elastic-porous medium at plane deformation, pp. 396-407The value of the filtration coefficient is determined empirically due to its physical and chemical properties of the medium and the filtered liquid. However, the experimental data obtained can vary significantly depending on the applied loads. The paper proposes a new hypothesis about the linear dependence of the medium filtration coefficient on the first invariant of the stress tensor arising in the region due to the hydraulic head at the boundary. Within the framework of this hypothesis, the change of the region filtration coefficient under plane deformation is investigated. The appearance of hydraulic head on the border leads to the appearance of elastic perturbations in the environment. Since the velocity of the latter is much higher than the velocity of the liquid filtration, the change in the stress state of the region will lead to a change in the pore space, and, consequently, to a change in the filtration coefficient. Thus, the initial problem is reduced to the solution of the classical problem of elasticity theory, namely, to the solution of the boundary value problem for the Erie function, and then to the definition of the filtration coefficient as the solution of the boundary value problem for the harmonic equation. A numerical algorithm for solving harmonic and biharmonic equations based on the boundary element method is constructed, which ultimately reduces the original problem to a system of linear algebraic equations. As shown by the numerical results of studies, the change in the filtration coefficient of some materials under operating loads reaches 20 percent at some points of the region. These results are especially relevant when using pipes, hoses, water hoses made of various polymeric materials, fiberglass, as well as in the operation of hydraulic engineering and treatment facilities. The change in the filtering capacity of the medium at low elastic deformations makes it possible at the appropriate pressures to filter even in those environments that are usually considered impervious to the liquid. The paper presents the results of numerical experiments to study the filtration coefficient of polyurethane (flexible irrigation hose) and butyl rubber. Graphs of the required mechanical parameters are constructed. Calculations were performed in the Maple software package.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.