Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'evolution operator':
Найдено статей: 7
  1. Изучается задача о малых движениях идеальной стратифицированной жидкости со свободной поверхностью, частично покрытой упругим льдом. Упругий лед моделируется упругой пластиной. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Начальная краевая задача сведена к задаче Коши для дифференциального уравнения второго порядка в некотором гильбертовом пространстве. После подробного изучения свойств операторных коэффициентов, отвечающих возникшей системе уравнений, доказывается теорема о сильной разрешимости полученной задачи Коши на конечном интервале времени. На этой основе доказана также теорема о существовании решения и исходной начально-краевой задачи.

    We study the problem of small motions of an ideal stratified fluid with a free surface, partially covered with elastic ice. Elastic ice is modeled by an elastic plate. The problem is studied on the basis of an approach connected with application of the so-called operator matrices theory. To this end we introduce Hilbert spaces and some of their subspaces as well as auxiliary boundary value problems. The initial boundary value problem is reduced to the Cauchy problem for the differential second-order equation in Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the strong solvability of the Cauchy problem obtained on a finite time interval. On this basis, we find sufficient conditions for the existence of a strong (with respect to the time variable) solution of the initial-boundary value problem describing the evolution of the hydrosystem.

  2. В данной работе рассматривается уравнение Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником. Показано, что уравнение Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником может быть проинтегрировано методом обратной спектральной задачи. Определена эволюция спектральных данных оператора Штурма–Лиувилля с периодическим потенциалом, связанного с решением уравнения Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником. Полученные результаты позволяют применить метод обратной задачи для решения уравнения Кортевега–де Фриза отрицательного порядка с самосогласованным источником в классе периодических функций.

    In this paper, we consider the negative order Korteweg–de Vries equation with a self-consistent integral source. It is shown that the negative-order Korteweg–de Vries equation with a self-consistent integral source can be integrated by the method of the inverse spectral problem. The evolution of the spectral data of the Sturm–Liouville operator with a periodic potential associated with the solution of the negative order Korteweg–de Vries equation with a self-consistent integral source is determined. The obtained results make it possible to apply the inverse problem method to solve the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions.

  3. Работа посвящена интегрированию модифицированного уравнения Кортевега–де Фриза с зависящими от времени коэффициентами, дополнительным членом и интегральным источником в классе быстроубывающих функций с использованием метода обратной задачи рассеяния. В данной работе рассматривается случай, когда оператор Дирака, входящий в пары Лакса, не является самосопряженным, поэтому собственные значения оператора Дирака могут быть кратными. Получена эволюция данных рассеяния для несамосопряженного оператора Дирака, потенциал которого представляет собой решение модифицированного уравнения Кортевега–де Фриза с зависящими от времени коэффициентами, с дополнительным членом и с интегральным источником класса быстроубывающих функций. Приведен пример, иллюстрирующий применение полученных результатов.

    The work is devoted to the integration of the modified Korteweg–de Vries equation with time-dependent coefficients, an additional term and an integral source in the class of rapidly decreasing functions using the inverse scattering problem method. In this paper, we consider the case when the Dirac operator included in the Lax pairs is not self-adjoint, therefore the eigenvalues of the Dirac operator can be multiples. The evolution of scattering data is obtained for the non-self-adjoint Dirac operator, the potential of which is a solution of the modified Korteweg–de Vries equation with time-dependent coefficients, with an additional term and with an integral source of a class of rapidly decreasing functions. An example is given to illustrate the application of the results obtained.

  4. В работе рассматривается задача о малых движениях вязкой стратифицированной жидкости, частично заполняющей контейнер, который равномерно вращается вокруг оси, сонаправленной с действием силы тяжести. Задача исследуется на основе подхода, связанного с применением так называемой теории операторных матриц. С этой целью вводятся гильбертовы пространства и некоторые их подпространства, а также вспомогательные краевые задачи. Исходная начально-краевая задача сводится к задаче Коши для дифференциального уравнения первого порядка в некотором гильбертовом пространстве. После детального изучения свойств операторных коэффициентов доказана теорема о разрешимости полученной задачи Коши. На этой основе найдены достаточные условия существования решения начально-краевой задачи, описывающей эволюцию исходной гидросистемы.

    We study the problem of small motions of a viscous stratified fluid partially filling a container that uniformly rotates around an axis co-directed by gravity. The problem is studied on the basis of an approach related to the application of the so-called operator matrix theory. To this end, we introduce Hilbert spaces and some their subspaces, as well as auxiliary boundary value problems. The original initial-boundary value problem is reduced to the Cauchy problem for a first-order differential equation in some Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the solvability of the Cauchy problem. On this basis, we find sufficient conditions for the existence of a solution of the original initial-boundary value problem describing the evolution of the hydro-system.

  5. В данной работе показано, что уравнение Кортевега-де Фриза отрицательного порядка может быть решено методом обратной задачи рассеяния. Определена эволюция спектральных данных оператора Штурма-Лиувилля с потенциалом, связанным с решением уравнения Кортевега-де Фриза отрицательного порядка. Полученные результаты позволяют применить метод обратной задачи рассеяния для решения рассматриваемой задачи.

    In this paper, we consider the integration of the negative order Korteweg-de Vries equation by the inverse scattering method. The evolution of the spectral data of the Sturm-Liouville operator with a potential associated with the solution of the negative order Korteweg-de Vries equation is determined. The obtained results make it possible to apply the method of inverse scattering problem to solve the negative order Korteweg-de Vries equation in the class of rapidly decreasing functions.

  6. Краснов А.Е., Надеждин Е.Н., Никольский Д.Н., Репин Д.С., Галяев В.С.
    Детектирование DDoS атак на основе анализа динамики и взаимосвязи характеристик сетевого трафика, с. 407-418

    В работе усовершенствован подход к обнаружению DDoS-атак на основе использования оператора эволюции динамических систем, разработанный ранее авторами. В предложенном подходе сетевому трафику ставятся в соответствие различные характеристики - признаки его временной структуры, формируемые по адресным и нагрузочным параметрам заголовков пакетов данных трафика. Предполагается, что различным состояниям трафика (нормальное состояние, атаки разных типов) соответствуют различные временные структуры характеристик, которые генерируется неизвестными линейными динамическими операторами. Связь между значениями различных характеристик в различных дискретных временных отсчетах устанавливается оператором эволюции. Основная рабочая гипотеза исследования заключается в том, что различным состояниям трафика соответствуют различные динамические операторы, а следовательно, и операторы эволюции. Приведен общий вид матрицы оператора эволюции трафика, реконструированной по значениям его наблюдаемых характеристик. Матричные элементы оператора эволюции определяют взаимосвязь характеристик трафика, давая целостное описание его динамической структуры. Введено понятие среднего значения оператора эволюции трафика, на основе которого формируются специальные хеш-функции и их статистические распределения для различных состояний трафика. В вычислительном эксперименте формировались адресные и нагрузочные хеш-функции, причинно соответствующие адресным и нагрузочным параметрам заголовков пакетов данных трафика. Результаты вычислительного эксперимента подтвердили возможность точной классификации трех состояний трафика: нормального и двух аномальных (HTTP flood атака и SlowLoris атака).

    Krasnov A.E., Nadezhdin E.N., Nikol'skii D.N., Repin D.S., Galyaev V.S.
    Detecting DDoS attacks by analyzing the dynamics and interrelation of network traffic characteristics, pp. 407-418

    This paper presents an improved approach previously developed by the authors for detection of DDoS attacks. It uses traffic evolution and dynamical operators, which makes it possible to take into consideration interrelations observed for data packets headers of traffic. It is assumed that each traffic state (normal state and anomalous attacked states) can be described by unique temporal patterns of characteristics generated by unknown linear dynamical operators. Interrelations between values of network traffic characteristics in different discrete time samples are determined by the evolution operator. The approach was applied for classification of three traffic states: normal and two abnormal (HTTP flood and SlowLoris DDoS attacks). The results prove that it is possible to distinguish normal and abnormal traffic states by hash functions of address and load fields of traffic data packets.

  7. В данной работе решается задача Коши для уравнения Кортевега-де Фриза с нагруженными членами и самосогласованным источником в классе быстроубывающих функций. Для решения этой задачи используется метод обратной задачи рассеяния. Получена эволюция данных рассеяния самосопряженного оператора Штурма-Лиувилля, коэффициент которого является решением уравнения Кортевега-де Фриза с нагруженными членами и самосогласованным источником. Приведены примеры, иллюстрирующие применение полученных результатов.

    In this paper, we solve the Cauchy problem for the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions. To solve this problem, the method of the inverse scattering problem is used. The evolution of the scattering data of the self-adjoint Sturm-Liouville operator, whose coefficient is a solution of the Korteweg-de Vries equation with loaded terms and a self-consistent source, is obtained. Examples are given to illustrate the application of the obtained results.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref