Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
О неподвижных точках многозначных отображений метрических пространств и дифференциальных включениях, с. 12-26В работе предложено обобщение теоремы Надлера о неподвижных точках для многозначных отображений действующих в метрических пространствах. Полученный результат позволяет изучать существование неподвижных точек у многозначных отображений, которые не обязательно являются сжимающими, и даже непрерывными, относительно метрики Хаусдорфа, и образами которых могут быть произвольные множества соответствующего метрического пространства. Упомянутый результат можно использовать для исследования дифференциальных и функционально-дифференциальных уравнений с разрывами, а также включений, правые части которых порождены многозначными отображениями с произвольными образами. Во второй части работы, в качестве приложения, получены условия существования и продолжаемости решений задачи Коши для дифференциального включения с некомпактной правой частью в пространстве Rn.
A generalization of the Nadler fixed point theorem for multi-valued maps acting in metric spaces is proposed. The obtained result allows to study the existence of fixed points for multi-valued maps that have as images any arbitrary sets of the corresponding metric space and are not necessarily contracting, or even continuous, with respect to the Hausdorff metric. The mentioned result can be used for investigating differential and functional-differential equations with discontinuities and inclusions generated by multi-valued maps with arbitrary images. In the second part of the paper, as an application, conditions of existence and continuation of solutions to the Cauchy problem for a differential inclusion with noncompact in Rn right-hand side are derived.
-
Асимптотическое распределение времени попадания для критических отображений на окружности, с. 365-383Хорошо известно, что преобразование ренормгруппы $\mathcal{R}$ имеет единственную неподвижную точку $f_ {cr}$ в пространстве критических $C^{3}$-гомеоморфизмов окружности с одной кубической критической точкой $x_{cr}$ и числом вращения равным золотому сечению $\overline{\rho}: =\frac{\sqrt{5} -1}{2}.$ Обозначим через $Cr(\overline{\rho})$ множество всех критических отображений окружности $C^ {1}$-сопряженных к $f_{cr}.$ Пусть $f\in Cr(\overline{\rho})$ и $\mu:=\mu_{f}$ --- единственная вероятностная инвариантная мера для $f.$ Зафиксируем $\theta \in (0,1).$ Для каждого $n\geq 1$ определим $c_{n}:=c_{n}(\theta)$ такое, что $\mu([x_{cr}, c_{n}]) = \theta\cdot\mu([x_{cr}, f^{q_{n}} (x_{cr})]),$ где $q_{n}$ --- время первого возврата линейного вращения $f_{\overline{\rho}}.$ Мы исследуем закон сходимости перемасштабированного точечного процесса времени попадания. Мы показываем, что предельное распределение сингулярно относительно меры Лебега.
It is well known that the renormalization group transformation $\mathcal{R}$ has a unique fixed point $f_{cr}$ in the space of critical $C^{3}$-circle homeomorphisms with one cubic critical point $x_{cr}$ and the golden mean rotation number $\overline{\rho}:=\frac{\sqrt{5}-1}{2}.$ Denote by $Cr(\overline{\rho})$ the set of all critical circle maps $C^{1}$-conjugated to $f_{cr}.$ Let $f\in Cr(\overline{\rho})$ and let $\mu:=\mu_{f}$ be the unique probability invariant measure of $f.$ Fix $\theta \in(0,1).$ For each $n\geq1$ define $c_{n}:=c_{n}(\theta)$ such that $\mu([x_{cr},c_{n}])=\theta\cdot\mu([x_{cr},f^{q_{n}}(x_{cr})]),$ where $q_{n}$ is the first return time of the linear rotation $f_{\overline{\rho}}.$ We study convergence in law of rescaled point process of time hitting. We show that the limit distribution is singular w.r.t. the Lebesgue measure.
-
Вычисляется второй член асимптотики преобразования монодромии монодромной особой точки для некоторого класса векторных полей на плоскости, диаграмма Ньютона которых состоит из двух четных ребер. В таком случае главный член преобразования монодромии тождественен. Полученный результат дает достаточное условие фокуса для особой точки из рассматриваемого класса.
Stability of monodromic singular points of planar dynamical systems with a fixed Newton diagram, pp. 34-49The second term of asymptotics of the monodromy map of the monodromic singular point is calculated for some class of vector fields in the plane with the Newton diagram having two even edges. In this case the principal term of the monodromy map is identical. The result obtained gives the sufficient condition for a singular point to be a focus.
-
В настоящей статье рассматривается краевая задача для дифференциальных уравнений типа Ланжевена с дробной производной Капуто в банаховом пространстве. Предполагается, что нелинейная часть уравнения представляет из себя отображение, подчиняющееся условиям типа Каратеодори. Уравнения такого типа обобщают уравнения движения в различного рода средах, например вязкоупругих, или в средах, где сила сопротивления выражается с помощью дробной производной. Для разрешения поставленной задачи будет использоваться теория дробного математического анализа, свойства функции Миттаг-Леффлера, а также теория мер некомпактности и уплотняющих операторов. Идея решения состоит в следующем: исходная задача сводится к задаче о существовании неподвижных точек соответствующего разрешающего интегрального оператора в пространстве непрерывных функций. Для доказательства существования неподвижных точек разрешающего оператора используется теорема типа Б.Н. Садовского о неподвижной точке. Для этого мы показываем, что разрешающий интегральный оператор является уплотняющим относительно векторной меры некомпактности в пространстве непрерывных функций и преобразует замкнутый шар в этом пространстве в себя.
дробная производная Капуто, дифференциальное уравнение типа Ланжевена, краевая задача, неподвижная точка, уплотняющее отображение, мера некомпактности, функция Миттаг-Леффлера
On a boundary value problem for a class of fractional Langevin type differential equations in a Banach space, pp. 415-432In this paper, we consider a boundary value problem for differential equations of Langevin type with the Caputo fractional derivative in a Banach space. It is assumed that the nonlinear part of the equation is a Caratheodory type map. Equations of this type generalize equations of motion in various kinds of media, for example, viscoelastic media or in media where a drag force is expressed using a fractional derivative. We will use the theory of fractional mathematical analysis, the properties of the Mittag-Leffler function, as well as the theory of measures of non-compactness and condensing operators to solve the problem. The initial problem is reduced to the problem of the existence of fixed points of the corresponding resolving integral operator in the space of continuous functions. We will use Sadovskii type fixed point theorem to prove the existence of fixed points of the resolving operator. We will show that the resolving integral operator is condensing with respect to the vector measure of non-compactness in the space of continuous functions and transforms a closed ball in this space into itself.
-
В работе исследован процесс хаотизации фазового портрета в ограниченной задаче о вращении тяжелого твердого тела с закрепленной точкой. Указаны два дополняющих друг друга механизма хаотизации - рост гомоклинической структуры и развитие каскадов бифуркаций удвоения периода. Отмечено адиабатическое поведение системы на нулевом уровне интеграла площадей при стремлении энергии к нулю. Найдены меандровые торы, связанные с нарушением свойства закручивания рассматриваемого отображения.
The paper deals with a transition to chaos in the phase-plane portrait of a restricted problem of rotation of a rigid body with a fixed point. Two interrelated mechanisms responsible for chaotisation have been indicated: 1) growth of the homoclinic structure and 2) development of cascades of period doubling bifurcations. On the zero level of the integral of areas, an adiabatic behavior of the system (as the energy tends to zero) has been noticed. Meander tori induced by the breakdown of the torsion property of the mapping have been found.
-
Под термином «размыкание предиката» понимается сведение задачи поиска и изучения свойств множества истинности заданного предиката к задаче поиска и изучения свойств неподвижных точек некоторого отображения. Размыкание предиката дает дополнительные возможность анализа его множества истинности, а также позволяет строить элементы этого множества с теми или иными свойствами. Известны примеры размыкания нетривиальных предикатов, таких как предикат «быть стабильным (слабо инвариантным) множеством», предикат «быть неупреждающим селектором», предикат «быть седловой точкой», предикат «быть равновесием Нэша». В упомянутых случаях вопрос об априорной оценке возможности размыкания того или иного интересующего нас предиката и о построении соответствующего размыкающего отображения оставался за рамками рассмотрения: размыкающие отображения предоставлялись как готовые объекты. В предлагаемой заметке мы постараемся отчасти закрыть этот пробел: приводятся формальное определение операции размыкания предиката, способы построения и исчисления размыкающих отображений и их основные свойства. Описываемый подход примен\'им во всех упомянутых выше положительных примерах. В качестве иллюстрации проведено следующее этому способу построение размыкающего отображения для предиката «быть нэшевским равновесием».
The term “predicate unlocking” is understood as the reduction of the problem of finding and studying the set of truth of a predicate to the problem of finding and studying the set of fix points of a map. Predicate unlocking provides opportunities for additional investigation of the truth set and also allows one to build the elements of this set with particular properties. There are examples of nontrivial predicate unlocking such as: the predicate “be a stable (weakly invariant) set”, the predicate “be a nonanticipatory selector”, the predicate “be a saddle point”, and the predicate “be a Nash equilibrium”. In these cases, the question of the a priori evaluation of the possibility of unlocking this or other predicate of interest and the question of constructing a corresponding unlocking map remained beyond consideration: the unlocking mappings were provided as ready-made objects. In this note we try to partly close this gap: we provide a formal definition of the predicate unlocking operation, methods for constructing and calculating of the unlocking mappings and their basic properties. As an illustration, the “routine” construction of unlocking mapping for the predicate “be a Nash equilibrium” is carried out. The described approach is far from universality, but, at least, it can be applied to all aforementioned positive examples.
-
О предельных циклах, резонансных и гомоклинических структурах в асимметричном уравнении маятникового типа, с. 228-244Рассматриваются периодические по времени возмущения асимметричного уравнения маятникового типа, близкого к интегрируемому стандартному уравнению математического маятника. Для автономного уравнения решается проблема предельных циклов, которая сводится к исследованию порождающих функций Пуанкаре-Понтрягина. Строится разбиение плоскости параметров на области с разным поведением фазовых кривых. Даются основные фазовые портреты для каждой области полученного разбиения. Для неавтономного уравнения изучается вопрос о структуре резонансных зон, к которому приводит решение задачи о синхронизации колебаний. Вычисляются усредненные уравнения маятникового типа, описывающие поведение решений исходного уравнения в индивидуальных резонансных зонах, и проводится их анализ. Устанавливается глобальное поведение решений в ячейках, не содержащих малых окрестностей невозмущенных сепаратрис. С помощью аналитического метода Мельникова и численного моделирования изучаются основные бифуркации неавтономного уравнения, связанные с возникновением негрубых гомоклинических кривых. На плоскости основных параметров строится бифуркационная диаграмма для отображения Пуанкаре, порожденного исходным уравнением, описывающая различные типы гомоклинических касаний сепаратрис седловой неподвижной точки. Обнаруживаются гомоклинические зоны (те области параметров, для которых существуют гомоклинические траектории к седловой неподвижной точки) с негладкими бифуркационными границами.
On limit cycles, resonance and homoclinic structures in asymmetric pendulum-type equation, pp. 228-244Time-periodic perturbations of an asymmetric pendulum-type equation close to an integrable standard equation of a mathematical pendulum are considered. For an autonomous equation, the problem of limit cycles, which reduces to the study of the Poincaré-Pontryagin generating functions, is solved. A partition of the parameter plane into domains with different behavior of the phase curves is constructed. Basic phase portraits for each domain of the obtained partition are given. For a nonautonomous equation, the question of the structure of the resonance zones, to which the solution of the problem of synchronization of oscillations leads, is studied. Averaged equations of the pendulum type, describing the behavior of solutions of the original equation in individual resonance zones, are calculated and analyzed. The global behavior of solutions in cells that do not contain small neighborhoods of unperturbed separatrices is ascertained. Using the analytical Melnikov method and numerical modeling, the basic bifurcations of the nonautonomous equation associated with the appearance of nonrough homoclinic curves are studied. On the plane of the main parameters, a bifurcation diagram for the Poincaré map generated by the original equation, describing different types of homoclinic tangencies of the separatrices of the saddle fixed point, is constructed. Homoclinic zones (those domains of parameters for which homoclinic trajectories to the saddle fixed point exist) with nonsmooth bifurcation boundaries are found.
-
В работе разрабатывается метод, именуемый «размыкание предиката», сводящий задачу поиска множества истинности предиката к задаче поиска множества неподвижных точек некоторого (вообще говоря, многозначного) отображения. Предлагаемая техника дает дополнительные возможности анализа задач и построения решений путем систематического привлечения результатов теории неподвижных точек. Даны формальное определение операции размыкания предиката, способы построения и исчисления размыкающих отображений и их основные свойства. В случае когда область определения предиката частично упорядочена, указаны способы построения размыкающих функций, обладающих свойством сужаемости. Это позволило получить представления интересующих элементов решения в виде итерационных пределов. Предлагаемый подход в силу абстрактности имеет широкую сферу применения. Вместе с тем эффективность полученного решения зависит от специфики рассматриваемой задачи и выбранного варианта реализации метода. В качестве иллюстрации в работе рассмотрена процедура построения размыкающего отображения для предиката «быть неупреждающим селектором». На основе этого отображения получено выражение для наибольшего неупреждающего селектора заданной мультифункции.
We consider an approach to constructing a non-anticipating selection of a multivalued mapping; such a problem arises in control theory under conditions of uncertainty. The approach is called “unlocking of predicate” and consists in the reduction of finding the truth set of a predicate to searching fixed points of some mappings. Unlocking of predicate gives an extra opportunity to analyze the truth set and to build its elements with desired properties. In this article, we outline how to build “unlocking mappings” for some general types of predicates: we give a formal definition of the predicate unlocking operation, the rules for the construction and calculation of “unlocking mappings” and their basic properties. As an illustration, we routinely construct two unlocking mappings for the predicate “be non-anticipating mapping” and then on this base we provide the expression for the greatest non-anticipating selection of a given multifunction.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.