Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается обобщенное уравнение Курамото-Сивашинского в случае, когда неизвестная функция зависит от двух пространственных переменных. Такой вариант данного уравнения используется в качестве математической модели формирования неоднородного рельефа на поверхности полупроводников под воздействием потока ионов. В работе данное уравнение изучается вместе с однородными краевыми условиями Неймана в трех областях: прямоугольнике, квадрате и равнобедренном треугольнике. Изучен вопрос о локальных бифуркациях при смене устойчивости пространственно однородными состояниями равновесия. Показано, что в данных трех краевых задачах реализуются послекритические бифуркации и в их результате в каждой из трех изучаемых краевых задач бифурцируют пространственно неоднородные решения. Для них получены асимптотические формулы. Выявлена зависимость характера бифуркаций от выбора, геометрии области. В частности, определен вид зависимости от пространственных переменных. Изучен вопрос об устойчивости, в смысле определения А.М. Ляпунова, найденных пространственно неоднородных решений. Анализ бифуркационных задач использовал известные методы теории динамических систем с бесконечномерным фазовым пространством: интегральных (инвариантных) многообразий, нормальных форм Пуанкаре-Дюлака в сочетании с асимптотическими методами.
On the influence of the geometric characteristics of the region on nanorelief structure, pp. 293-304The generalized Kuramoto-Sivashinsky equation in the case when the unknown function depends on two spatial variables is considered. This version of the equation is used as a mathematical model of formation of nonhomogeneous relief on a surface of semiconductors under ion beam. This equation is studied along with homogeneous Neumann boundary conditions in three regions: a rectangle, a square, and an isosceles triangle. The problem of local bifurcations in the case when spatially homogeneous equilibrium states change stability is studied. It is shown that for these three boundary value problems post-critical bifurcations occur and, as a result, spatially nonhomogeneous solutions bifurcate in each of these boundary value problems. For them asymptotic formulas are obtained. The dependence of the nature of bifurcations on the choice and geometry of the region is revealed. In particular, the type of dependence on spatial variables is determined. The problem of Lyapunov stability of spatially nonhomogeneous solutions is studied. Well-known methods from dynamical systems theory with an infinite-dimensional phase space: integral (invariant) manifolds, normal Poincare-Dulac forms in combination with asymptotic methods are used to analyze the bifurcation problems.
-
О равномерной сходимости аппроксимаций потенциала двойного слоя вблизи границы двумерной области, с. 26-43На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации потенциала двойного слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho=\left(r^2-d^2\right)^{1/2}$, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^5$, а также на самой границе. Также доказано, что использование для вычисления интегралов стандартных квадратурных формул не нарушает равномерной кубической сходимости аппроксимаций прямого значения потенциала на границе класса $C^6$. При некоторых упрощениях доказано, что использование для вычисления интегралов стандартных квадратурных формул влечет отсутствие равномерной сходимости аппроксимаций потенциала внутри области вблизи любой граничной точки. Теоретические выводы подтверждены результатами численного решения задачи Дирихле для уравнения Лапласа в круговой области.
квадратурная формула, потенциал двойного слоя, метод граничных элементов, почти сингулярный интеграл, эффект пограничного слоя, равномерная сходимостьOn the basis of piecewise quadratic interpolation, semi-analytical approximations of the double layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration with respect to the variable $\rho=\left(r^2-d^2\right)^{1/2}$ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with the cubic velocity uniformly near the boundary of the class $C^5$, and also on the boundary itself. It is also proved that the use of standard quadrature formulas for calculating the integrals does not violate the uniform cubic convergence of approximations of the direct value of the potential on the boundary of the class $C^6$. With some simplifications, it is proved that the use of standard quadrature formulas for calculating the integrals entails the absence of uniform convergence of potential approximations inside the domain near any boundary point. The theoretical conclusions are confirmed by the results of the numerical solution of the Dirichlet problem for the Laplace equation in a circular domain.
-
В настоящей работе проведено исследование модели деформаций системы из $n$ стилтьесовских струн, расположенных вдоль геометрического графа-звезды, с нелинейным условием в узле. Соответствующая граничная задача имеет вид $$ \left\{\begin{array}{lll} -\left(p_iu_i^\prime\right)(x)+\displaystyle{\int_{0}^{x}}u_i\,dQ_i=F_i(x)-F_i(+0)-(p_iu_i')(+0),\quad i=1,2, \ldots, n,\\ \sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0),\\ u_1(0)=u_2(0)=\ldots=u_n(0)=u(0),\\ (p_iu_i')(l_i-0)+u_i(l_i)\Delta Q_i(l_i)=\Delta F_i(l_i),\quad i=1,2,\ldots, n. \end{array} \right. $$ Здесь функции $u_i(x)$ определяют деформации каждой из струн; $F_i(x)$ описывают распределение внешней нагрузки; $p_i(x)$ характеризуют упругость струн; $Q_i(x)$ описывают упругую реакцию внешней среды. Скачок $\Delta F_i(l_i)$ равняется сосредоточенной в точке $l_i$ внешней силе; скачок $\Delta Q_i(l_i)$ совпадает с жесткостью упругой опоры (пружины), прикрепленной к точке $l_i$. Условие $\sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0)$ возникает за счет наличия в узле ограничителя, представленного отрезком $[-m,m]$, на перемещение струн под воздействием внешней нагрузки, то есть предполагается, что $|u(0)|\leq m$. Здесь через $N_{[-m,m]}u(0)$ обозначен нормальный конус к $[-m,m]$ в точке $u(0)$. В работе проведен вариационный вывод модели; доказаны теоремы существования и единственности решения; проанализированы критические нагрузки, при которых происходит соприкосновение струн с ограничителем; приведена явная формула представления решения.
интеграл Стилтьеса, функция ограниченной вариации, мера, геометрический граф, энергетический функционалIn the present paper we study a model of deformations for a system of $n$ Stieltjes strings located along a geometric graph-star with a nonlinear condition at the node. The corresponding boundary value problem has the form $$ \left\{\begin{array}{lll} -\left(p_iu_i^\prime\right)(x)+\displaystyle{\int_0^x}u_idQ_i=F_i(x)-F_i(+0)-(p_iu_i')(+0), \quad i=1,2, \ldots, n,\\ \sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0),\\ u_1(0)=u_2(0)=\ldots=u_n(0)=u(0),\\ (p_iu_i')(l_i-0)+u_i(l_i)\Delta Q_i(l_i)=\Delta F_i(l_i), \quad i=1,2,\ldots, n. \end{array} \right. $$ Here the functions $u_i(x)$ determine the deformations of each of the strings; $F_i(x)$ describe the distribution of the external load; $p_i(x)$ characterize the elasticity of strings; $Q_i(x)$ describe the elastic response of the environment. The jump $\Delta F_i(l_i)$ is equal to the external force concentrated at the point $l_i$; the jump $\Delta Q_i(l_i)$ coincides with the stiffness of the elastic support (spring) attached to the point $l_i$. The condition $\sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0)$ arises due to the presence of a limiter in the node represented by the segment $ [-m,m]$, on the movement of strings under the influence of an external load, thus it is assumed that $|u(0)|\leq m$. Here $N_{[-m,m]}u(0)$ denotes the normal cone to $[-m,m]$ at the point $u(0)$. In the present paper a variational derivation of the model is carried out; existence and uniqueness theorems for solutions are proved; the critical loads at which the strings come into contact with the limiter are analyzed; an explicit formula for the representation of the solution is presented.
-
Рассматривается одна из версий обобщенного вариационного уравнения Гинзбурга-Ландау, дополненная периодическими краевыми условиями. Для такой краевой задачи изучен вопрос о существовании, устойчивости и локальных бифуркациях одномодовых состояний равновесия. Показано, что в случае близком к критическому трехкратного нулевого собственного значения в задаче об устойчивости одномодовых пространственно неоднородных состояний равновесия реализуются докритические бифуркации двумерных инвариантных торов, заполненных пространственно неоднородными состояниями равновесия. Анализ поставленной задачи опирается на такие методы теории бесконечномерных динамических систем как теория инвариантных многообразий и аппарат нормальных форм. Для решений, формирующих инвариантные торы, получены асимптотические формулы.
вариационное уравнение Гинзбурга-Ландау, краевая задача, устойчивость, бифуркации, асимптотические формулы
Stability and local bifurcations of single-mode equilibrium states of the Ginzburg-Landau variational equation, pp. 240-258One of the versions of the generalized variational Ginzburg-Landau equation is considered, supplemented by periodic boundary conditions. For such a boundary value problem, the question of existence, stability, and local bifurcations of single-mode equilibrium states is studied. It is shown that in the case of a nearly critical threefold zero eigenvalue, in the problem of stability of single-mode spatially inhomogeneous equilibrium states, subcritical bifurcations of two-dimensional invariant tori filled with spatially inhomogeneous equilibrium states are realized. The analysis of the stated problem is based on such methods of the theory of infinite-dimensional dynamical systems as the theory of invariant manifolds and the apparatus of normal forms. Asymptotic formulas are obtained for the solutions that form invariant tori.
-
На основе кусочно-квадратичной интерполяции получены полуаналитические аппроксимации нормальной производной потенциала простого слоя вблизи и на границе двумерной области. Для вычисления интегралов, образующихся после интерполяции функции плотности, используется точное интегрирование по переменной $\rho =(r^{2} -d^{2} )^{1/2} $, где $d$ и $r$ — расстояния от наблюдаемой точки до границы области и до граничной точки интегрирования соответственно. Доказана устойчивая сходимость таких аппроксимаций с кубической скоростью равномерно вблизи границы класса $C^{5}$, а также на самой границе. Также доказано, что на границе аппроксимации по аналогии с точной функцией терпят разрыв, величина которого пропорциональна значениям интерполированной функции плотности, но могут быть доопределены на границе до функций, непрерывных или на замкнутой внутренней, или на замкнутой внешней приграничной области. Теоретические выводы о равномерной сходимости подтверждены результатами вычисления нормальной производной вблизи границы единичного круга.
квадратурная формула, нормальная производная потенциала простого слоя, граничный элемент, почти сингулярный интеграл, эффект пограничного слоя, равномерная сходимостьOn the basis of piecewise quadratic interpolation, semi-analytical approximations of the normal derivative of the simple layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration over the variable $\rho=(r^{2}-d^{2})^{1/2} $ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with cubic velocity uniformly near the boundary of the class $C^{5}$, as well as on the boundary itself. It is also proved that, by analogy with the exact function, the approximations suffer a discontinuity at the boundary, the magnitude of which is proportional to the values of the interpolated density function, but they can be extended on the boundary to functions that are continuous either on a closed internal border domain or on a closed external one. Theoretical conclusions about uniform convergence are confirmed by the results of calculating the normal derivative near the boundary of a unit circle.
-
Предлагается описание сопряженного оператора к оператору, соответствующему линейной многоточечной краевой задаче для квазидифференциального уравнения, обладающее свойствами: исходный и сопряженный к нему оператор действуют из одного и того же рефлексивного банахова пространства в сопряженное банахово пространство; сопряженный оператор также соответствует некоторой линейной многоточечной краевой задаче для квазидифференциального уравнения.
We study multipoint boundary value problems for quasidifferential equations, under certain (broad) assumptions on the coefficients of the equation so that there exists the formally adjoint (in the sense of Lagrange) quasidifferential equation. The operator corresponding to the original boundary value problem is densely defined in a reflexive Banachian space and has closed image in its adjoint; the operator corresponding to the adjoint problem has exactly the same properties. We note that the adjoint boundary value problem is not classical: its solution satisfies the quasidifferential equation only in the open intervals between points in which boundary conditions are specified. These considerations lead us to the notion of the generalized boundary value problem. In particular, we introduce the notion of the generalized Valle-Pousin problem (GVPP), where the number of boundary conditions may exceed the order of the equation by allowing higher quasiderivatives of the solution to be discontinuous at the interior points in which boundary conditions are specified. We also show that the boundary value problem adjoint to GVPP is itself a GVPP.
-
В последние два десятилетия углеродные нанотрубки активно исследуются в физической литературе, что обусловлено многообещающими перспективами их применения в микроэлектронике; в то же время интересные математические свойства используемых при этом гамильтонианов, к сожалению, часто остаются без должного внимания математиков. В настоящей статье проведено математически строгое исследование спектральных свойств гамильтониана $H_{\varepsilon}=H_0+\varepsilon V$ где гамильтониан электрона в углеродной нанотрубке типа «зигзаг» $H_0$ записан в приближении сильной связи, а оператор $\varepsilon V$ (потенциал) имеет вид
$$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$
здесь $\varepsilon >0$, $V_1,V_2$ - вещественные числа, $\delta_{n0}$ - символ Кронекера. Гамильтониан $H_{\varepsilon}$ отвечает углеродной нанотрубке с примесью, равномерно распределенной в сечении нанотрубки. Данный гамильтониан является разностным оператором, определенным на функциях из $(l^2(\Omega ))^2$, где $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, удовлетворяющих периодическим граничным условиям. В статье, в частности, доказано, что для каждой подзоны спектра вблизи одной из граничных точек подзоны в случае малых потенциалов существует ровно один квазиуровень, то есть собственное значение или резонанс. Для квазиуровней получены асимптотические формулы вида
$$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
+O(\varepsilon^3),$$где $l$ - номер подзоны, $N$ - число атомов в сечении нанотрубки, $\pm$ - знак $\lambda$. Также найдено условие того, когда квазиуровень является собственным значением.
In the past two decades, carbon nanotubes have been actively investigated in the physics literature, because of the promising prospects for their use in microelectronics; at the same time, interesting mathematical properties of used Hamiltonians, unfortunately, are often overlooked by mathematicians. In this paper, we carry out the mathematically rigorous investigation of spectral properties of the Hamiltonian $H_{\varepsilon}=H_0+\varepsilon V$, where the Hamiltonian $H_0$ of an electron in a zigzag carbon nanotube is written in the tight-binding approach, and the operator $\varepsilon V$ (potential) has the form
$$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$
(here $\varepsilon >0$, $V_1,V_2$ are real numbers, $\delta_{n0}$ is the Kronecker delta). The Hamiltonian $H_{\varepsilon}$ corresponds to the carbon nanotube with an impurity uniformly distributed over the cross section of the nanotube. This Hamiltonian is the difference operator defined on functions from $(l^2(\Omega ))^2$, where $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, satisfying the periodic boundary conditions. In particular, in this paper we prove that for each subband of the spectrum near one of the boundary points of the subband exactly one quasilevel (i.e. eigenvalue or resonance) exists in the case of small potentials. For quasilevels, the asymptotic formulas of the form
$$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
+O(\varepsilon^3),$$are obtained, where $l$ is the subband number, $N$ is the number of atoms in the cross section of the nanotube, and $\pm$ is the sign of the $\lambda$. Also, we find the condition when a quasilevel is an eigenvalue.
-
Рассматриваются процессы образования периодических структур при ионной бомбардировке. В качестве математической модели выбрано двумерное обобщение уравнения Курамото–Сивашинского. Аналогичное уравнение было получено и в работе Бредли–Харпера. С математической точки зрения изрезанный рельеф в результате ионной бомбардировки может быть объясним как локальные бифуркации плоского профиля при смене устойчивости.
Для описания такого рельефа получены асимптотические формулы. Для исследования нелинейной краевой задачи использован метод теории бифуркаций для задач с бесконечномерным фазовым пространством. В частности, использован метод построения нормальных форм, ведущий свое начало от алгоритма Крылова–Боголюбова.
ионная бомбардировка, периодические наноструктуры, уравнение Курамото–Сивашинского, локальные бифуркации, нормальные формы.We consider ion-bombardment-induced processes for formation of periodic structures. As a mathematical model, we have chosen the generalized two-dimensional Kuramoto–Sivashinsky equation which is equivalent to the equation obtained by Bradley–Harper. The jagged relief obtained due to ionic bombardment can be explained from a mathematical point of view as local bifurcations of flat profile involving an exchange of stabilities.
To describe the above relief asymptotic formulas are obtained. The bifurcation theory method for problems with infinite dimensional phase space is used to study nonlinear boundary value problem. In particular, we use normal form building which springs from Krylov–Bogolyubov method of averaging.
-
Рассматривается плоская задача о движении кругового цилиндра с переменным радиусом в идеальной, несжимаемой, тяжелой жидкости. Предполагается, что начальное возмущение жидкости вызвано вертикальным и безотрывным ударом цилиндра, полупогруженного в жидкость. Особенностью этой задачи является то, что при определенных условиях (например, при быстром торможении цилиндра или при быстром уменьшении его радиуса), происходит отрыв жидкости от тела, в результате которого вблизи его поверхности образуются присоединенные каверны. Формы внутренних свободных границ и конфигурация внешней свободной границы заранее неизвестны и подлежат определению в ходе решения задачи. Формулируется нелинейная задача с односторонними ограничениями, на основе которой определяется связность зоны отрыва, а также формы свободных границ жидкости на малых временах. В случае когда давление на внешней свободной поверхности совпадает с давлением в каверне, строится аналитическое решение задачи. Для определения одной из двух симметричных точек отрыва получено трансцендентное уравнение, содержащее полный эллиптический интеграл первого рода и элементарные функции. При кавитационном торможении недеформируемого цилиндра найдена явная формула для внутренней свободной границы жидкости на малых временах. Показано хорошее согласование аналитических результатов с прямыми численными расчетами.
идеальная несжимаемая жидкость, цилиндр с переменным радиусом, удар, кавитационное торможение, свободная граница, точка отрыва, малые времена, число Фруда, число кавитацииThe 2D problem of the movement of a circular cylinder with a variable radius in an ideal, incompressible, heavy fluid is considered. It is assumed that the initial perturbation of the fluid is caused by a vertical and continuous impact of the cylinder semi-submerged in the fluid. The feature of this problem is that under certain conditions (for example, at fast braking of the cylinder or at fast reduction of its radius), there is a separation of the fluid from the body, resulting in the formation of attached cavities near its surface. The forms of the inner free boundaries and the configuration of the external free border are in advance unknown and are subject to definition when the problem is solved. A nonlinear problem with one-sided constraints is formulated, on the basis of which the connectivity of the separation zone and the shape of the free boundaries of the fluid at small times are determined. In the case where the pressure on the external free surface coincides with the pressure in the cavity, an analytical solution of the problem is constructed. To define one of two symmetric points of separation, a transcendental equation containing a full elliptic integral of the first kind and elementary functions is obtained. For the case of cavitational braking of a nondeformable cylinder, an explicit formula for the inner free boundary of the fluid on small times is found. Good agreement of analytical results with direct numerical calculations is shown.
-
Для дискретного оператора Шредингера на графе с вершинами на пересечении двух прямых c потенциалом определенного вида в окрестностях точек ±2 (граничных точек существенного спектра) доказаны существование и единственность квазиуровней (собственных значений или резонансов), для них получены асимптотические формулы. Найдены условия, при которых коэффициент отражения равен нулю.
We consider the discrete Schr¨odinger operator with a potential of a special form defined on a graph whose nodes lie on the union of two intersected straight lines. We prove that there exist unique quasi-levels (eigenvalues or resonances) in the neighborhoods of the point ±2 (these points consist a boundary of the essential spectrum). The asymptotic formulae for quasi-levels are obtained. We find the conditions for the coefficient of reflection is equal to zero.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.