Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'gradient':
Найдено статей: 12
  1. Бадриев И.Б., Исмагилов И.Н., Исмагилов Л.Н.
    Метод решения нелинейных стационарных анизотропных задач фильтрации, с. 3-11

    Работа посвящена методу решения стационарных задач фильтрации несжимаемой жидкости, следующей нелинейному анизотропному многозначному закону фильтрации с предельным градиентом. Задача фильтрации сформулирована в виде вариационного неравенства второго рода с обратно сильно монотонным оператором в гильбертовом пространстве. Функционал, входящий в это вариационное неравенство, является суммой нескольких полунепрерывных снизу выпуклых собственных функционалов. Для решения вариационного неравенства предлагается использовать итерационный метод расщепления.

    Badriev I.B., Ismagilov I.N., Ismagilov L.N.
    On the method of solving of nonlinear stationary anisotropic filtration problems, pp. 3-11

    The paper is devoted to a method of solving of stationary filtration problems of non-compressible fluid which follows the nonlinear multi-valued anisotropic law of filtration with limiting gradient. This problem mathematically is formulated in the form of variational inequality of the second kind in Hilbert space with inversely strongly monotone operator. The functional occurring in this variational inequality is a sum of several lower semi-continuous convex proper functionals. For solving the considered variational inequality the splitting method is offered.

  2. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

    Some properties of the discrete variational problem of the dynamic approximation in the complex Euclidean (L + 1)-dimensional space are studied here. It generalizes familiar problems of the mean square polynomial approximation of the functions given on the finite interval in accordance with their references. In the problem under consideration sequence approximation y = {yi}L0 of the references of the function y(t) ∈ L2[0, T], T = Lh on the lattice Ih is achieved by solving homogeneous linear differential equations or difference equations of the given order n with constant but possibly unknown coefficients. Thus, it is shown that in the latter case the approximation problem also includes the identification problem. The analysis of its properties is the main subject of the article. The problem is set to find vector of coefficients of difference equation Σn0 ŷi+k αi = 0, where k = 0,L − n. Coefficients and initial conditions of the transient process by of this equation are optimized. The optimization purpose is to achieve the best approximation of the dynamic process y ∈ E being considered here. The approximation criterion is a minimum of the quantity ||y − ŷ||2E. The variational problem under study is shown to be reduced to the problem of projecting vector y in E on the kernels of the difference operators with unknown coefficients  αωSEn+1, where is a direction, S is a sphere or a hyperplane. The problem under study is shown to be related to the problems of the discretization and identifiability. In this case vector coordinates y ∈ E is an exact solution of differential equation on the lattice Ih and y = ŷ. The problem of the variational identification is compared with algebraic methods of identification. The orthogonal complement to the kernels of the difference operators are shown to always have Toeplitz basis. This results in fast projecting algorithms of computation. The problem of finding optimal vector α is shown to be reduced to the problem of the absolute minimization of the identification functional depending on the direction in En+1. The iterative procedure of its minimization on a sphere with wide domain and high speed of convergence is presented here. The variational problem considered here can be applied in mathematical modeling for control problem and research purposes. On the finite intervals, for example, it is possible to use piecewise-linear dynamic approximations of the complex dynamic processes with difference and differential equations of the specified type.

     

  3. В работе рассматривается задача Коши для системы квазилинейных уравнений первого порядка специального вида. Система представлена в симметричном виде, фазовая переменная n-мерная. Рассматриваемая задача Коши получается из задачи Коши для одного уравнения Гамильтона-Якоби-Беллмана с помощью операции дифференцирования этого уравнения и краевого условия по переменной xi. Предполагается, что гамильтониан и начальное условие принадлежат классу непрерывно дифференцируемых функций. Гамильтониан является выпуклым по сопряженной переменной.

    В работе предложен новый подход к определению обобщенного решения системы квазилинейных уравнений первого порядка. Обобщенное решение рассматривается в классе многозначных функций с выпуклыми компактными значениями. Доказаны теоремы существования, единственности и устойчивости решения по начальным данным. Получено полугрупповое свойство для введенного обобщенного решения. Показано, что потенциал для обобщенного решения системы квазилинейных уравнений совпадает с единственным минимаксным/вязкостным решением соответствующей задачи Коши для уравнения Гамильтона-Якоби-Беллмана, а в точках дифференцируемости минимаксного решения его градиент совпадает с обобщенным решением исходной задачи Коши. На основе этой связи получены свойства обобщенного решения задачи Коши для системы квазилинейных уравнений. В частности, показано, что введенное обобщенное решение совпадает с супердифференциалом минимаксного решения соответствующей задачи Коши и однозначно почти всюду.

    С помощью характеристик уравнения Гамильтона-Якоби-Беллмана описана структура множества точек, в которых минимаксное решение недифференцируемо.

    Показано, что свойство обобщенного решения для одного квазилинейного уравнения со скалярной фазовой переменной, введенное О.А. Олейник, может быть распространено на случай рассматриваемой системы квазилинейных уравнений.

    We consider the Cauchy problem for the system of quasi-linear first order equations of a special form. The system is symmetric, the state variable is n-dimensional. The considered Cauchy problem is deduced from the Cauchy problem for the Hamilton-Jacobi-Bellman equation by means of the operation of differentiation of this equation and the boundary condition with respect to the variable xi. It is assumed that the Hamiltonian and the initial condition are continuously differentiable functions. The Hamiltonian is convex with respect to the adjoint variable.

    The paper presents a new approach to the definition of the generalized solution of the system of quasi-linear first order equations. The generalized solution belongs to the class of multivalued functions with convex compact values. We prove the existence, uniqueness and stability theorems. The semigroup property for the proposed generalized solution is obtained. It is shown that the potential for generalized solutions of quasi-linear equations coincides with the unique minimax/viscosity solution of the corresponding Cauchy problem for the Hamilton-Jacobi-Bellman equation, and at the points of differentiability of the minimax solution its gradient coincides with the generalized solution of the Cauchy problem. Properties of the generalized solutions of the Cauchy problem for a system of quasi-linear equations are obtained on the basis of this connection. In particular, it is shown that the introduced generalized solution coincides with the superdifferential of the minimax solution of the Cauchy problem and is singlevalued almost everywhere.

    The structure of the set of points at which the minimax solution is not differentiable is described by using the characteristics of the Hamilton-Jacobi-Bellman equation.

    It is shown that the property of the generalized solution of the quasilinear equation with a scalar state variable proposed by O.A. Oleinik, can be extended to the case of the system of quasi-linear equations under consideration.

  4. Ачарджи С., Молодцов Д.А.
    Мягкий рациональный криволинейный интеграл, с. 578-596

    Теория мягких множеств — это новая область математики, которая имеет дело с неопределенностями. Приложения теории мягких множеств широко распространены в различных областях науки и социальных наук, таких как принятие решений, информатика, распознавание образов, искусственный интеллект и т.д. Важность мягких теоретико-множественных версий математического анализа ощущается в нескольких областях информатики. В этой статье предлагаются некоторые концепции мягкого градиента функции и мягкого интеграла, аналога криволинейного интеграла в классическом анализе. Установлены основные свойства мягких градиентов. Найдено необходимое и достаточное условие, при котором множество может быть подмножеством мягкого градиента некоторой функции. Доказано включение мягкого градиента в мягкий интеграл. Установлены полуаддитивность и положительная однородность мягкого интеграла. Получены оценки мягкого интеграла и размера его отрезка. Полуаддитивность относительно верхнего предела интегрирования доказана. Кроме того, эта статья расширяет теоретические развитие мягкого рационального криволинейного интеграла и связанных областей для повышения функциональности с точки зрения вычислительных систем.

    Acharjee S., Molodtsov D.A.
    Soft rational line integral, pp. 578-596

    Soft set theory is a new area of mathematics that deals with uncertainties. Applications of soft set theory are widely spread in various areas of science and social science viz. decision making, computer science, pattern recognition, artificial intelligence, etc. The importance of soft set-theoretical versions of mathematical analysis has been felt in several areas of computer science. This paper suggests some concepts of a soft gradient of a function and a soft integral, an analogue of a line integral in classical analysis. The fundamental properties of soft gradients are established. A necessary and sufficient condition is found so that a set can be a subset of the soft gradient of some function. The inclusion of a soft gradient in a soft integral is proved. Semi-additivity and positive uniformity of a soft integral are established. Estimates are obtained for a soft integral and the size of its segment. Semi-additivity with respect to the upper limit of integration is proved. Moreover, this paper enriches the theoretical development of a soft rational line integral and associated areas for better functionality in terms of computing systems.

  5. Предлагается численный метод решения задачи оптимального быстродействия для линейных систем с постоянным запаздыванием. Доказано, что этот итерационный метод сходится за конечное число итераций к ε-оптимальному решению. Под ε-оптимальным решением понимается пара {T, u}, где u = u(t), t ∈ [0, T] допустимое управление, под действием которого управляемая система переходит в ε-окрестность начала координат за время T ≤ Tmin, Tmin время оптимального по быстродействию перехода в начало координат. Достаточно общая задача быстродействия с запаздыванием исследована в работе [Васильев Ф.П., Иванов Р.П. О приближенном решении задачи быстродействия с запаздыванием //Журнал вычислительной математики и математической физики. 1970. Т. 10, № 5. С. 1124–1140.], предложено ее приближенное решение и обсуждены вычислительные аспекты. Однако для решения вспомогательных задач оптимального управления, возникающих при применении предлагаемых способов решения задачи быстродействия, предлагается использовать методы градиентного и ньютоновского типов, которые имеют локальную сходимость. Предложенный нами метод имеет глобальную сходимость.

    A computational method of solving time-optimal control problem for linear systems with delay is proposed. It is proved that the method converges in a finite number of iterations to an ε-optimal solution, which is understood as a pair {T, u}, where u = u(t), t ∈ [0, T] is an admissible control that moves the system into an ε-neighborhood of the origin in time T ≤ Tmin, and the optimal time is Tmin. An enough general time-optimal control problem with delay is studied in [Vasil’ev F.P, Ivanov R.P. On an approximated solving of time-optimal control problem with delay, Zh. Vychisl. Mat. Mat. Fiz., 1970, vol. 10, no. 5, pp. 1124–1140 (in Russian)], an approximate solution is proposed for it, and computational aspects are discussed. However, to solve some auxiliary optimal control problems arising there, it is suggested to use methods of gradient and Newton type, which possess only a local convergence. The method proposed in the present paper has a global convergence.

  6. Изучаются аппроксимирующие конечномерные задачи математического программирования, возникающие в результате кусочно-постоянной дискретизации управления (в рамках техники параметризации управления) при оптимизации распределенных систем достаточно широкого класса. Устанавливается непрерывность по Липшицу градиентов функций аппроксимирующих задач; приводятся соответствующие формулы градиентов, использующие аналитическое решение исходной управляемой системы и сопряженной к ней системы и тем самым обеспечивающие возможность алгоритмического разделения проблемы оптимизации и проблемы решения управляемой начально-краевой задачи. Применение к численному решению задач оптимизации иллюстрируется на примере задачи Коши-Дарбу, управляемой по интегральному критерию. Приводятся результаты численного решения соответствующей аппроксимирующей задачи в системе MatLab с помощью программы fmincon, а также авторской программы, реализующей метод условного градиента. Кроме того, рассматривается задача безусловной минимизации, получаемая из аппроксимирующей задачи с ограничениями методом синус-параметризации. Приводятся результаты численного решения указанной задачи в системе MatLab с помощью программы fminunc, а также авторских программ, реализующих методы наискорейшего спуска и BFGS. Результаты численных экспериментов подробно анализируются.

    We study approximating finite-dimensional mathematical programming problems arising from piecewise constant discretization of the control (in the framework of control parametrization technique) in the course of optimization of distributed parameter systems of a rather wide class. We establish the Lipschitz continuity for gradients of approximating problems. We present their formulas involving analytical solutions of an original controlled system and their adjoint one, thereby giving the opportunity for algorithmic separation of the optimization problem itself and the problem of solving a controlled system. Application of the approach under study to numerical optimization of distributed systems is illustrated by example of the Cauchy-Darboux system controlled by an integral criterion. We present the results of numerical solving the corresponding approximation problem in MatLab with the help of the program fmincon and also an author-developed program based on the conditional gradient method. Moreover, the unconstrained minimization problem is investigated that arises from the constrained approximation problem with applying the sine parametrization method. We present the results of numerical solving this problem in MatLab with the help of the program fminunc and also two author-developed programs based on the steepest descent and BFGS methods, respectively. The results of all numerical experiments are analyzed in detail.

  7. Резольвентный метод, базирующийся на преобразованиях Лежандра, применен для интегрирования уравнений баллистики в среде со степенным по скорости сопротивлением, коэффициент которого падает линейно с высотой. Во втором приближении по градиенту плотности и с учетом уменьшения с высотой ускорения свободного падения g(y) задача сведена к линейному дифференциальному уравнению. Его решением получены универсальные формулы для неоднородностной добавки к резольвентной функции fn(b), а также к вертикальной и горизонтальной координатам δy(b), δx(b), b = tgθ - наклон траектории. Подробно рассмотрен случай квадратичного сопротивления.

     

    The resolvent method based on Legendre transformation was applied to integrate ballistic equations of a heavy point mass in inhomogeneous medium with the drag force being power-law with respect to speed, at that the coefficient of the drag force decreases linearly with height y. General expressions were obtained for resolvent function a′′bb(b) with a(b) being an intercept and b = tgθ, where я is inclination angle. In the second order by gradient c/m−1 of perturbative approach, the universal formulas for δa′′bb(b)-, δx(b)-, δy(b)-additions were derived. The case of Releigh resistance was considered particularly in frames of the method above and inhomogeneity influence on the motion was investigated. The falling of gravity g(y) is taken into consideration too.

     

  8. Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.

    The stability of incompressible fluid plane-parallel flow over a layer of a saturated porous medium is studied. The results of a linear stability analysis are described at different porosity values. The considered system is bounded by solid wall from the porous layer bottom. Top fluid surface is free and rigid. A linear stability analysis of plane-parallel stationary flow is presented. It is realized for parameter area where the neutral stability curves are bimodal. The porosity variation effect on flow stability is considered. It is shown that there is a transition between two main instability modes: long-wave and short-wave. The long-wave instability mechanism is determined by inflection points within the velocity profile. The short-wave instability is due to the large transverse gradient of flow velocity near the interface between liquid and porous medium. Porosity decrease stabilizes the long wave perturbations without significant shift of the critical wavenumber. Simultaneously, the short-wave perturbations destabilize, and their critical wavenumber changes in wide range. When the porosity is less than 0.7, the inertial terms in filtration equation and magnitude of the viscous stress near the interface increase to such an extent that the Kelvin-Helmholtz analogue of instability becomes the dominant mechanism for instability development. The stability band realizes in narrow porosity area. It separates the two branches of the neutral curve.

  9. Лебедев В.Г., Сысоева А.А., Княжева И.С., Данилов Д.А., Галенко П.К.
    Компьютерное моделирование высокоскоростного затвердевания разбавленного расплава Si-As, с. 123-140

    В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.

    Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.

    Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.

    Lebedev V.G., Sysoeva A.A., Knyazheva I.S., Danilov D.A., Galenko P.K.
    Computer simulation of the rapid solidification for diluted melt Si-As, pp. 123-140

    We consider a locally nonequilibrium process of solidification for a supercooled binary melt. For sake of simplicity, it is assumed, that the solidifying binary system is at constant temperature and pressure. Also there are two phases corresponding to the solid and the liquid states. The mathematical description of the solidification process is based on the phase-field model that generalizes the approach of Plapp (M. Plapp, Phys. Rev. E 84, 031601 (2011)) to the case of locally nonequilibrium processes. We use the method of extended irreversible thermodynamics to derive thermodynamically consistent equations of the model, in contrast to the phenomenological approach of Plapp. A concentration as a dynamic variable (and not the chemical potential of the impurity) is another difference from Plapp's model. The equivalence of describing the process of solidification through the concentration field and through the chemical potential of the system is shown in the framework of the resulting model. In view of the smallness of the relaxation times, the present model is reduced to the singular-perturbed system of partial differential parabolic equations describing the dynamics of concentration and phase fields. In the paper, it is assumed that the description of the thermodynamic equilibrium states on the basis of the experimentally obtained Gibbs potentials is given.

    To verify the model, the numerical simulation of the one-dimensional problem of solidification of the melt was performed in the approximation of the diluted melt Si-As, which had been repeatedly investigated experimentally. In this paper, we propose a gradient-stable explicit method of integrating equations of the second order of accuracy in time in order to solve the system of singularly-perturbed equations numerically. We reduced an infinite space interval to a finite interval by the method of «periodic translation». The estimation of stability was performed using numerical experiments.

    The concentration profile, the phase-field profile and the distribution coefficient of the impurity at the front of solidification depending upon the value of supercooling were obtained from the numerical simulation of the solidification process for diluted melt Si-As. An analytical expression for the distribution coefficient as a function of supercooling that follows from the locally nonequilibrium model with a sharp interface was used to test the adequacy of the results of numerical experiments. The effect of the model parameters on the solidification process and behavior of the numerical solutions near the diffuse boundary were investigated.

  10. Хорошо известно, что методы сопряженного градиента полезны при решении масштабных задач нелинейной оптимизации без ограничений. В данной работе мы рассматриваем объединение лучших свойств двух методов сопряженного градиента. В частности, мы даем новый метод сопряженного градиента, основанный на гибридизации полезных методов DY (Dai-Yuan) и HZ (Hager-Zhang). Параметры гибрида выбираются таким образом, чтобы предложенный метод удовлетворял условиям сопряженности и достаточного спуска. Показано, что новый метод сохраняет свойство глобальной сходимости двух вышеупомянутых методов. Описаны численные результаты для набора стандартных тестовых задач. Показано, что в большинстве случаев эффективность предложенного метода выше, чем у DY и HZ.

    Hafaidia I., Guebbai H., Al-Baali M., GHIAT M.
    A new hybrid conjugate gradient algorithm for unconstrained optimization, pp. 348-364

    It is well known that conjugate gradient methods are useful for solving large-scale unconstrained nonlinear optimization problems. In this paper, we consider combining the best features of two conjugate gradient methods. In particular, we give a new conjugate gradient method, based on the hybridization of the useful DY (Dai-Yuan), and HZ (Hager-Zhang) methods. The hybrid parameters are chosen such that the proposed method satisfies the conjugacy and sufficient descent conditions. It is shown that the new method maintains the global convergence property of the above two methods. The numerical results are described for a set of standard test problems. It is shown that the performance of the proposed method is better than that of the DY and HZ methods in most cases.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref