Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'grid-based method':
Найдено статей: 5
  1. Статья посвящена исследованию эффективности применения технологии параллельных вычислений на многопроцессорных системах с общей памятью для задач приближенного расчета множеств достижимости нелинейных управляемых систем в конечномерном евклидовом пространстве. В рамках исследования предложен параллельный алгоритм приближенного построения множеств достижимости, основанный на пошаговой вычислительной схеме с использованием узлов «кубических» сеток для аппроксимации множеств. Предложенный алгоритм предназначен для проведения расчетов на ЭВМ архитектуры SMP и решает вопросы разделения задачи на отдельные подзадачи, синхронизации работы параллельных частей алгоритма и равномерного распределения нагрузки между процессорами. Численное моделирование примеров на ЭВМ с двумя 4-ядерными процессорами с использованием предложенного в статье параллельного алгоритма показало высокую эффективность применения технологии параллельных вычислений для расчета множеств достижимости сеточными методами.

    The paper investigates the effectiveness of shared memory parallel programming approach for constructing approximate attainable sets of nonlinear control systems in a finite-dimensional Euclidean space. In this study, we propose a parallel iterative algorithm for constructing approximate attainable sets employing a regular Cartesian grid for spatial discretization. The proposed algorithm has been designed for implementation on SMP systems and handles such issues as data decomposition, threads synchronization and distribution of work between multiple threads. Numerical experiments on a system with two quad-core processors confirmed a high efficiency of shared memory parallel programming approach for applying grid-based methods to construct approximate attainable sets.

  2. Рассматривается задача консервативной интерполяции расчетных параметров между нестыкующимися поверхностными сетками. Разработан метод интерполяции на основе воксельного представления расчетной сетки с последующей оценкой площади пересечения каждого вокселя с ячейками сетки. Представление массы ячеек результирующей сетки осуществляется через линейную комбинацию известных масс ячеек базовой сетки. Метод позволяет рассматривать задачи интерполяции на криволинейных поверхностях, когда определение геометрического пересечения ячеек сеток является невозможным. Рассмотрены примеры интерполяции данных на основе различных функций на нестыкующихся сетках, описывающих плоские и криволинейные поверхности. Представлены результаты сравнения работы метода воксельной интерполяции с алгоритмом интерполяции на основе функций радиального базиса различных классов гладкости.

     

    Karavaev A.S., Kopysov S.P., Kuz'min I.M.
    Conservative interpolation method between non-matching surface meshes, pp. 64-75

    In this paper, we consider a problem of conservative interpolation data between non-matching surface meshes. We develop a new interpolation method based on voxel representation of the mesh followed by the evaluation of intersection area of each voxel with mesh cells. The mass of cells of the resulting mesh is represented through a linear combination of the known mass of parent cells. The method allows us to consider the problem of interpolation on curved surfaces when it is impossible to define the grid cells geometric intersection. The method was validated by numerical simulation of data interpolation based on various functions for the non-matching meshes describing plane and curved surfaces. The method of voxel interpolation was compared to the interpolation algorithm based on radial basis functions of different smoothness degree.

     

  3. Рассматривается модификация ранее разработанного генератора шестигранных сеток из воксельных данных для построения моделей, заданных в форме CAD геометрии. Генератор относится к семейству методов, основанных на модификации регулярной сетки, и является универсальным с точки зрения возможности использования в качестве исходных данных как объемного (воксельного), так и STL-поверхностного представления геометрии модели. В настоящее время алгоритм работает с CAD моделями, описанными в хорошо известном формате STL. Вместе с тем, метод позволяет обрабатывать поверхности более высокого порядка, описанные в произвольном формате, если определены соответствующие процедуры для операций проекции и пересечения. Для определения начальной позиции узлов сетки используется полученный из STL-геометрии файл объемных данных в виде «знакопределенных полей расстояний». Разработана специальная процедура проецирования с целью адаптации построенной ортогональной сетки к границам модели. Данный подход обеспечивает аппроксимацию острых ребер и углов и выполняется перед любыми другими операциями построения сетки. Реализован дополнительный функционал для улучшения качества сетки, включающий вставку дополнительных граничных слоев, разбиение ячеек плохого качества и оптимизированное сглаживание узлов. Алгоритм протестирован на значительном числе моделей, часть из которых приведена в качестве примеров.

    We consider a modification of the previously developed voxel-based mesh algorithm to generate models given in STL-geometry format. Proposed hexahedral mesh generator belongs to the family of grid methods, and is general-purpose in terms of a capability to use as source data both volume (voxel) and STL-surface representation of model geometry. For now, the algorithm works with CAD models described in the well-known STL format. However, it also allows to handle higher-order surface patches defined in an arbitrary format if appropriate procedures for projection and intersection operations will be specified. To define the initial position of mesh nodes, a “signed distance field” volume data file, obtained from the STL-geometry, is used. A special projection technique was developed to adapt constructed orthogonal mesh on the model's boundary. It provides an approximation of sharp edges and corners and is performed before running any other operations with the mesh. Finally, to improve the quality of the mesh, additional procedures were implemented, including boundary layers insertion, bad quality cells splitting, and optimization-based smoothing technique. The algorithm has been tested on a sufficient number of models, some of which are given as examples.

  4. Рассмотрено волновое уравнение с двумя пространственными и одной временной независимыми переменными и эффектом наследственности вида $$\frac{\partial^2 u}{\partial t^2}=a^2\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f\big(x,y,t,u(x,y,t),u_t(x,y,\cdot)\big),\\u_t(x,y,\cdot)=\left\{u(x,y,t+\xi),-\tau \leqslant \xi\leqslant 0\right\}. $$На основе идеи разделения текущего состояния и функции-предыстории сконструировано семейство сеточных методов для численного решения этого уравнения. По текущему состоянию строится полный аналог известного для уравнения без запаздывания метода с факторизацией, а влияние предыстории учитывается с помощью интерполяционных конструкций. Исследован порядок локальной погрешности алгоритма. Получена теорема о сходимости и порядке сходимости методов с помощью вложения в общую разностную схему систем с последействием. Приводятся результаты расчетов тестового примера с переменным запаздыванием.

    The paper presents the consideration of the wave equation with two space variables and one time variable and with heredity effect  $$\frac{\partial^2 u}{\partial t^2}=a^2\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + f\big(x,y,t,u(x,y,t),u_t(x,y,\cdot)\big),\\u_t(x,y,\cdot)=\left\{u(x,y,t+\xi),-\tau \leqslant \xi\leqslant 0\right\}. $$A family of grid methods is constructed for the numerical solution of this equation; the methods are based on the idea of separating the current state and the history function. A complete analog of the factorization method which is known for an equation without delay is constructed according to the current state. Influence of prehistory is taken into consideration by interpolation constructions. The local error order of the algorithm is investigated. A theorem on the convergence and on the order of convergence of methods is obtained by means of embedding into a general difference scheme with aftereffect. The results of calculating a test example with variable delay are presented.

  5. В рамках методов и уравнений механики многофазных сред построена математическая модель образования газового гидрата при закачке метана в пласт конечной протяженности, насыщенный метаном и льдом. Изучаемая проблема сведена к проблеме нахождения двух подвижных границ фазовых переходов. На основе метода ловли фронта в узел пространственной сетки получены численные решения задачи. Найдены распределения по пространственной координате температуры, давления и гидратонасыщенности, а также приведена эволюция во времени координат границ фазовых переходов. Анализ результатов вычислительных экспериментов показал, что образование газогидрата метана может происходить как на фронтальной границе, так и в протяженной зоне. Установлено, что часть газогидрата, образовавшегося в протяженной области, может в дальнейшем разлагаться на газ и воду. В этом случае протяженная область гидратообразования будет вырождаться во фронтальную поверхность.

    In the framework of the methods and equations of the mechanics of multiphase media, a mathematical model is constructed for the formation of gas hydrate during the injection of methane into a reservoir of finite length saturated with methane and ice. The problem under study is reduced to the problem of finding two moving boundaries of phase transitions. Based on the method of catching the front in the node of the spatial grid, numerical solutions of the problem are obtained. The distributions along the spatial coordinate of temperature, pressure, and hydrate saturation are found, and the time evolution of the coordinates of the phase transition boundaries is given. Analysis of the results of computational experiments has shown that the formation of methane gas hydrate can occur both at the frontal boundary and in the extended zone. It has been established that part of the gas hydrate formed in the extended region can be further decomposed into gas and water. In this case, the extended region of hydrate formation will degenerate into the frontal surface.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref