Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается сопряженная задача теплообмена, которая возникает при расчете параметров инфракрасного нагревателя. Приводится постановка задачи для трехмерного турбулентного течения в трубе излучателя с учетом наличия лучистого теплообмена с отражателем и внешнего теплообмена с окружающей средой. Проведен расчет для поставленной задачи.
It is considered associate problem of heat-exchange, which we must solve at determination of parameters of а radiant heater. It is resulted a statement of a problem for three-dimensional turbulent current in pipe of emitter with provision for presence radiant heat-exchange with reflector and external heat-exchange with surrounding ambience. It is organized a calculation of delivered problems.
-
Исследуется обратная задача определения многомерного ядра интегрального члена, зависящего от временной переменной $t$ и $ (n-1)$-мерной пространственной переменной $x'=\left(x_1,\ldots, x_ {n-1}\right)$ из $n$-мерного уравнения теплопроводности с переменным коэффициентом теплопроводности. Прямую задачу представляет задача Коши для этого уравнения. Интегральный член имеет вид свертки по времени ядра и решения прямой задачи. Дополнительное условие для решения обратной задачи задается решение прямой задачи на гиперплоскости $x_n = 0.$ В начале изучаются свойства решения прямой задачи. Для этого эта задача сводится к решению интегрального уравнения второго порядка вольтерровского типа и к нему применяется метод последовательных приближений. Далее поставленная обратная задача приводится к двум вспомогательным задачам, дополнительное условие второй из них содержит неизвестное ядро вне интеграла. Затем вспомогательные задачи заменяются эквивалентной замкнутой системой интегральных уравнений вольтерровского типа относительно неизвестных функций. Применяя метод сжатых отображений к этой системе в классе гёльдеровских функций доказываем основной результат статьи, который является теоремой локального существования и единственности решения обратной задачи.
The inverse problem of determining a multidimensional kernel of an integral term depending on a time variable $t$ and $ (n-1)$-dimensional spatial variable $x'=\left(x_1,\ldots, x_ {n-1}\right)$ in the $n$-dimensional heat equation with a variable coefficient of thermal conductivity is investigated. The direct problem is the Cauchy problem for this equation. The integral term has the time convolution form of kernel and direct problem solution. As additional information for solving the inverse problem, the solution of the direct problem on the hyperplane $x_n = 0$ is given. At the beginning, the properties of the solution to the direct problem are studied. For this, the problem is reduced to solving an integral equation of the second kind of Volterra-type and the method of successive approximations is applied to it. Further the stated inverse problem is reduced to two auxiliary problems, in the second one of them an unknown kernel is included in an additional condition outside integral. Then the auxiliary problems are replaced by an equivalent closed system of Volterra-type integral equations with respect to unknown functions. Applying the method of contraction mappings to this system in the Hölder class of functions, we prove the main result of the article, which is a local existence and uniqueness theorem of the inverse problem solution.
-
Рассматривается управляемая параболическая система, которая описывает нагрев заданного количества стержней. Функции плотности внутренних источников тепла стержней точно неизвестны, а заданы только отрезки их изменения. На концах стержней находятся управляемые источники тепла и помехи. Цель выбора управления заключается в том, чтобы привести вектор средних температур стержней в фиксированный момент времени на заданный компакт при любых допустимых функциях плотности внутренних источников тепла и любых допустимых реализациях помех. После замены переменных получена задача управления системой обыкновенных дифференциальных уравнений при наличии неопределенности. Используя численный метод, для этой задачи построено множество разрешимости. Выполнены модельные расчеты.
A controlled parabolic system that describes the heating of a given number of rods is considered. The density functions of the internal heat sources of the rods are not known exactly, and only the segments of their change are given. At the ends of the rods there are controlled heat sources and disturbances. The goal of the choice of control is to lead the vector of average temperatures of the rods at a fixed time to a given compact for any admissible functions of the density of internal heat sources and any admissible realizations of disturbances. After replacing variables, the problem of controlling a system of ordinary differential equations in the presence of uncertainty is obtained. Using a numerical method, a solvability set is constructed for this problem. Model calculations are carried out.
-
Об альтернативе уравнениям в частных производных при моделировании систем типа реакция – диффузия, с. 35-47Рассмотрен альтернативный способ описания реакционно-диффузионных систем химической кинетики на основе обыкновенных дифференциальных уравнений. В рамках данного подхода учёт диффузии вещества и переноса тепла в модели осуществляется без перехода к частным производным, а только за счёт увеличения количества переменных и аддитивных поправок в исходные уравнения. При этом в качестве базовой модели химической кинетики для данной работы была выбрана модель, лишённая недостатков классических моделей химической кинетики, таких как несогласованность уравнений по размерности или масштабу.
On alternative to partial differential equations for the modelling of reaction-diffusion systems, pp. 35-47An alternative way for describing reaction-diffusion systems of chemical kinetics on the basis of ordinary differential equations is considered in this paper. Under this approach, diffusion of matter and heat transfer in the model are taken into account without going to the partial derivatives, but only by increasing the number of variables and the addition of corrective coefficients in the original equations. As a base model of chemical kinetics was chosen the one, in which there was no such drawbacks of classical models, as the inconsistency of the equations on the dimension or scale.
-
В настоящей работе сформулирована, поставлена и решена обратная граничная задача теплопроводности, при условии, что коэффициент теплопроводности является кусочно-постоянным. Эта задача занимает важное место в технике, так как теплонагруженные узлы технических конструкций покрывают теплоизолирующим слоем, термические характеристики которого сильно отличаются от термических характеристик самой конструкции. Подобные задачи находят свое применение при планировании стендовых испытаний летательных аппаратов. Современные композитные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ. В ракетных двигателях внутреннюю стенку камеры внутреннего сгорания покрывают теплозащитным слоем, который изготавливают из композитных материалов. Благодаря свойствам этих материалов теплозащитный слой значительно снижает температуру стенки внутреннего сгорания. При решении обратной граничной задачи необходимо учитывать разницу коэффициентов теплопроводности составных частей композитных материалов, из которых изготавливают стенку камеры. Задача исследовалась с помощью ряда Фурье по собственным функциям для уравнения с разрывным коэффициентом. Доказано, что для решения обратной задачи применимо преобразование Фурье по переменной времени. Для решения обратной задачи использовано преобразование Фурье, позволяющее свести обратную задачу к операторному уравнению, которое было решено методом невязки.
метод проекционной регуляризации, обратная задача теплопроводности, кусочно-постоянный коэффициент теплопроводностиIn the present paper, an inverse boundary value problem of thermal conduction is formulated, posed and solved, provided that the thermal diffusivity is piecewise constant. This task holds a prominent place in technology, since thermally loaded units of technical constructions are covered with a heat insulating layer, the thermal characteristics of which are very different from the thermal characteristics of the structure itself. Such tasks are used in the planning of bench tests of aircraft. Modern composite materials solve this problem, giving developers a number of advantages. In rocket engines, the inner wall of the internal combustion chamber is covered with a heat-shielding layer, which is made of composite materials. Due to the properties of these materials, the heat-shielding layer significantly reduces the temperature of the internal combustion wall. When solving an inverse boundary problem, it is necessary to take into account the difference in the thermal conductivity coefficients of the component parts of composite materials, which make the wall of the chamber. The problem was investigated using a Fourier series in eigenfunctions for an equation with a discontinuous coefficient. It is proved that for the solution of the inverse problem the Fourier transform with respect to $t$ is applicable. To solve the inverse problem, the Fourier transform was used, which made it possible to reduce the inverse problem to the operator equation, which was solved by the discrepancy method.
-
Группой симметрии данного дифференциального уравнения называется группа преобразований, которые переводят решения уравнения в решения. Если известны инфинитезимальные образующие группы симметрий, то мы можем находить инвариантные решения относительно этой группы. Для систем уравнений с частными производным группу симметрий можно использовать, чтобы явно найти частные типы решений, которые сами являются инвариантными относительно некоторой подгруппы полной группы симметрий системы. Например, решения уравнения с частными производными от двух независимых переменных, инвариантные относительно заданной однопараметрической группы симметрий, находятся решением системы обыкновенных дифференциальных уравнений. Класс инвариантных относительно группы решений включает в себя точные решения, имеющие непосредственное математическое или физическое значения. В работе с помощью известных инфинитезимальных образующих некоторых групп симметрий двумерного уравнения теплопроводности найдены решения, инвариантные относительно этих групп. Сначала рассматривается двумерное уравнение теплопроводности с источником тепловыделения (с источником теплопоглощения), которое описывает процесс распространения тепла на плоской области. Для этого случая найдено семейство точных решений, зависящее от произвольных постоянных. Затем найдены инвариантные решения уравнения теплопроводности без источника тепла и без источника поглощения.
The symmetry group of a given differential equation is the group of transformations that translate the solutions of the equation into solutions. If the infinitesimal generators of symmetry groups are known, then we can find solutions that are invariant under this group. For systems of partial differential equations, the symmetry group can be used to explicitly find particular types of solutions that are themselves invariant under a certain subgroup of the full symmetry group of the system. For example, solutions of an equation with partial derivatives of two independent variables, invariant under a given one-parameter symmetry group, are found by solving a system of ordinary differential equations. The class of solutions that are invariant with respect to a group includes many exact solutions that have immediate mathematical or physical meaning. In this paper, using the well-known infinitesimal generators of some symmetry groups of the two-dimensional heat conduction equation, solutions are found that are invariant with respect to these groups. First we consider the two-dimensional heat conduction equation with a source that describes the process of heat propagation in a flat region. For this case, a family of exact solutions was found, depending on an arbitrary constant. Then invariant solutions of the two-dimensional heat conduction equation without source are found.
-
Математическое моделирование композиционных материалов играет важную роль в современной технике, а решение и исследование обратных граничных задач теплообмена невозможно без использования систем собственных функций задачи Штурма-Лиувилля для дифференциального уравнения с разрывными коэффициентами. Одним из важнейших свойств таких систем является их полнота в соответствующих пространствах. Это свойство систем позволяет доказать теоремы существования и единственности как для прямых задач, так и обратных граничных задач теплопроводности, а также обосновать численные методы решения таких задач. В настоящей статье доказана полнота в пространстве $L_2[r_0,r_2]$ задачи Штурма-Лиувилля для дифференциального оператора второго порядка с разрывным коэффициентом. Эта задача возникает при исследовании и решении обратной граничной задачи теплопроводности для полого шара, состоящего из двух шаров с различными коэффициентами температуропроводности. Доказана самосопряженность, инъективность, а также положительная определенность этого оператора.
система собственных функций, задача Штурма—Лиувилля, композиционные материалы, обратные граничные задачи
Completeness of the system of eigenfunctions of the Sturm-Liouville problem with the singularity, pp. 59-63Mathematical modeling of composite materials plays an important role in modern technology, and the solution and study of inverse boundary value problems of heat transfer is impossible without the use of systems of eigenfunctions of the Sturm-Liouville problem for the differential equation with discontinuous coefficients. One of the most important properties of such systems is their completeness in the corresponding spaces. This property of systems allows to prove theorems of existence and uniqueness of both direct problems and inverse boundary value problems of thermal conductivity, and also to prove numerical methods of solving such problems. In this paper, we prove the completeness of the Sturm-Liouville problem in the space $L_2[r_0,r_2]$ for a second-order differential operator with a discontinuous coefficient. This problem arises when investigating and solving the inverse boundary problem of thermal conductivity for a hollow ball consisting of two balls with different temperature conductivity coefficients. Self-conjugacy, injectivity, and positive definiteness of this operator are proved.
-
Пусть $U$ — множество допустимых управлений, $T>0$ и задана шкала банаховых пространств $W[0;\tau]$, $\tau\in(0;T]$, такая, что множество сужений функций из $W=W[0;T]$ на $[0;\tau]$ совпадает с $W[0;\tau]$; $F[.;u]\colon W\to W$ — управляемый вольтерров оператор, $u\in U$. Ранее для операторного уравнения $x=F[x;u]$, $x\in W$, автором была введена система сравнения в форме функционально-интегрального уравнения в пространстве $\mathbf{C}[0;T]$. Было установлено, что для сохранения (относительно малых вариаций правой части) глобальной разрешимости операторного уравнения достаточно сохранения глобальной разрешимости указанной системы сравнения, а также установлены соответствующие достаточные условия. В данной статье рассматриваются дальнейшие примеры приложения этой теории: нелинейное волновое уравнение, сильно нелинейное волновое уравнение, нелинейное уравнение теплопроводности, сильно нелинейное параболическое уравнение.
эволюционное вольтеррово уравнение второго рода общего вида, функционально-интегральное уравнение, система сравнения, сохранение глобальной разрешимости, единственность решения, нелинейное волновое уравнение, нелинейное параболическое уравнениеLet $U$ be the set of admissible controls, $T>0$, and let $W[0;\tau]$, $\tau\in(0;T]$, be a scale of Banach spaces such that the set of restrictions of functions from $W=W[0;T]$ to $[0;\tau]$ coincides with $W[0;\tau]$; let $F[.;u]\colon W\to W$ be a controlled Volterra operator, $u\in U$. Earlier, for the operator equation $x=F[x;u]$, $x\in W$, the author introduced a comparison system in the form of a functional integral equation in the space $\mathbf{C}[0;T]$. It was established that to preserve (under small perturbations of the right-hand side) the global solvability of the operator equation, it is sufficient to preserve the global solvability of the specified comparison system, and the corresponding sufficient conditions were established. In this paper, further examples of application of this theory are considered: nonlinear wave equation, strongly nonlinear wave equation, nonlinear heat equation, strongly nonlinear parabolic equation.
-
Применение теоретико-вероятностного подхода при моделировании систем химической кинетики, с. 492-500В работе рассматривается модель химической кинетики, для которой вывод уравнений не опирается на закон действующих масс, а строится на основе таких принципов, как геометрическая вероятность, а также совместная вероятность для двух событий. Для этой модели строится обобщение на случай реакции-диффузии в гетерогенной среде, а также учитывается конвекционный и диффузионный перенос тепловой энергии. Построение данного обобщения проводится по альтернативной методике на основе систем обыкновенных дифференциальных уравнений и без перехода к частным производным. По своему описанию этот подход близок к методу конечных объемов, но в отличие от него для описания диффузии применяются статистические упрощения и принцип геометрической вероятности. Подобный альтернативный вариант позволяет значительно упростить численную реализацию итоговой модели, а также упростить ее качественный анализ методами теории динамических систем. Помимо этого, также значительно повышается эффективность параллельной реализации численного метода для итоговой модели. Дополнительно к этому мы также рассмотрим приложение модели для описания эталонного примера кинетики с квазипериодическим режимом, а также рассмотрим алгоритм перевода стандартных моделей с размерными кинетическими константами к ее формализму.
The paper considers a model of chemical kinetics for which the derivation of equations does not rely on the law of mass action, but is rather based on such principles as geometric probability and joint probability. For this model a generalization is constructed for the case of reaction-diffusion systems in heterogeneous medium, with respect to the convective and diffusive transfer of heat. The construction of this generalization is carried out by an alternative methodology, which is based fully on systems of ordinary differential equations, without a transition to partial derivatives. The description of this new method is a bit similar to the finite volume method, except that it uses statistical simplifying positions and geometric probability to describe diffusion processes. Such approach allows us to greatly simplify the numerical implementation of the resulting model, as well as to simplify its quantitative analysis by dynamical systems theory methods. Moreover, the efficiency of parallel implementation of the numerical method is increased for the resulting model. In addition, the author considers an application of this model for the description of some example reaction with quasi-periodic regime, as well as an algorithm for the transition from standard models with dimensional kinetic constants to its formalism.
-
О сингулярном интегральном уравнении Вольтерра краевой задачи теплопроводности в вырождающейся области, с. 241-252В работе рассматривается сингулярное интегральное уравнение типа Вольтерра второго рода, к которому методом тепловых потенциалов редуцируются некоторые граничные задачи теплопроводности в областях с границей, изменяющейся со временем. Особенность такого рода задач заключается в том, что область вырождается в точку в начальный момент времени. Соответственно, отличительной особенностью исследуемого интегрального уравнения является то, что интеграл от ядра, при стремлении верхнего предела интегрирования к нижнему не равен нулю. Данное обстоятельство не позволяет решить данное уравнение методом последовательных приближений. Построено общее решение соответствующего характеристического уравнения и методом равносильной регуляризации Карлемана–Векуа найдено решение полного интегрального уравнения. Показано, что соответствующее однородное интегральное уравнение имеет ненулевое решение.
интегральное уравнение, сингулярное интегральное уравнение типа Вольтерра второго рода, метод регуляризации Карлемана–Векуа
On the singular Volterra integral equation of the boundary value problem for heat conduction in a degenerating domain, pp. 241-252In this paper, we consider a singular Volterra type integral equation of the second kind, to which some boundary value problems of heat conduction in domains with a boundary varying with time are reduced by the method of thermal potentials. The peculiarity of such problems is that the domain degenerates into a point at the initial moment of time. Accordingly, a distinctive feature of the integral equation under study is that the integral of the kernel, as the upper limit of integration tends to the lower one, is not equal to zero. This circumstance does not allow solving this equation by the method of successive approximations. We constructed the general solution of the corresponding characteristic equation and found the solution of the complete integral equation by the Carleman–Vekua method of equivalent regularization. It is shown that the corresponding homogeneous integral equation has a nonzero solution.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.