Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'heat source':
Найдено статей: 5
  1. Изместьев И.В., Ухоботов В.И., Кудрявцев К.Н.
    Численное решение задачи управления параболической системой с помехами, с. 33-47

    Рассматривается управляемая параболическая система, которая описывает нагрев заданного количества стержней. Функции плотности внутренних источников тепла стержней точно неизвестны, а заданы только отрезки их изменения. На концах стержней находятся управляемые источники тепла и помехи. Цель выбора управления заключается в том, чтобы привести вектор средних температур стержней в фиксированный момент времени на заданный компакт при любых допустимых функциях плотности внутренних источников тепла и любых допустимых реализациях помех. После замены переменных получена задача управления системой обыкновенных дифференциальных уравнений при наличии неопределенности. Используя численный метод, для этой задачи построено множество разрешимости. Выполнены модельные расчеты.

    Izmest'ev I.V., Ukhobotov V.I., Kudryavtsev K.N.
    Numerical solution of a control problem for a parabolic system with disturbances, pp. 33-47

    A controlled parabolic system that describes the heating of a given number of rods is considered. The density functions of the internal heat sources of the rods are not known exactly, and only the segments of their change are given. At the ends of the rods there are controlled heat sources and disturbances. The goal of the choice of control is to lead the vector of average temperatures of the rods at a fixed time to a given compact for any admissible functions of the density of internal heat sources and any admissible realizations of disturbances. After replacing variables, the problem of controlling a system of ordinary differential equations in the presence of uncertainty is obtained. Using a numerical method, a solvability set is constructed for this problem. Model calculations are carried out.

  2. Проведен численный анализ сопряженной естественной конвекции в пористой среде, насыщенной газом, окруженной твердыми стенками конечной толщины при наличии локального источника тепла. Краевая задач сформулирована в безразмерных переменных "функция тока - вектор завихренности - температура" и решена методом конечных разностей. Установлены масштабы влияние источника тепла, проницаемости внутреннего объема, фактора нестационарности и теплофизических характеристик ограждающих стенок на режимы течения и теплопереноса.

    Conjugate natural convection in a porous medium saturated with a gas surrounded by the finite thickness solid walls at presence of a local heat source has been numerically analyzed. Boundary problem has been formulated in dimensionless variables such as "stream function - vorticity vector - temperature" and it has been solved by finite difference method. The effect levels of the heat source, the medium permeability, the transient factor and the heat conductivity of the solid walls on flow patterns and heat transfer modes have been determined.

  3. Рассматривается задача управления параболической системой, которая описывает нагрев заданного количества стержней. Функции плотности внутренних источников тепла стержней точно неизвестны, а задан только отрезок их изменения. Управлением являются точечные источники тепла, которые находятся на концах стержней. Цель выбора управления заключается в том, чтобы в фиксированный момент времени модуль линейной функции, определяемой с помощью средних температур стержней, не превышал заданного значения при любых допустимых функциях плотности внутренних источников тепла. Разработана методика сведения этой задачи к одномерной задаче управления при наличии неопределенности. Найдены необходимые и достаточные условия окончания.

    The problem of control of a parabolic system, which describes the heating of a given number of rods, is considered. The density functions of the internal heat sources of the rods are not exactly known, and only the segment of their change is given. Control are point heat sources that are located at the ends of the rods. The goal of the choice of control is to ensure that at a fixed time the modulus of the linear function determined using the average temperatures of the rods does not exceed the given value for any admissible functions of the density of internal heat sources. A technique has been developed for reducing this problem to a one-dimensional control problem under uncertainty. Necessary and sufficient termination conditions are found.

  4. Группой симметрии данного дифференциального уравнения называется группа преобразований, которые переводят решения уравнения в решения. Если известны инфинитезимальные образующие группы симметрий, то мы можем находить инвариантные решения относительно этой группы. Для систем уравнений с частными производным группу симметрий можно использовать, чтобы явно найти частные типы решений, которые сами являются инвариантными относительно некоторой подгруппы полной группы симметрий системы. Например, решения уравнения с частными производными от двух независимых переменных, инвариантные относительно заданной однопараметрической группы симметрий, находятся решением системы обыкновенных дифференциальных уравнений. Класс инвариантных относительно группы решений включает в себя точные решения, имеющие непосредственное математическое или физическое значения. В работе с помощью известных инфинитезимальных образующих некоторых групп симметрий двумерного уравнения теплопроводности найдены решения, инвариантные относительно этих групп. Сначала рассматривается двумерное уравнение теплопроводности с источником тепловыделения (с источником теплопоглощения), которое описывает процесс распространения тепла на плоской области. Для этого случая найдено семейство точных решений, зависящее от произвольных постоянных. Затем найдены инвариантные решения уравнения теплопроводности без источника тепла и без источника поглощения.

    The symmetry group of a given differential equation is the group of transformations that translate the solutions of the equation into solutions. If the infinitesimal generators of symmetry groups are known, then we can find solutions that are invariant under this group. For systems of partial differential equations, the symmetry group can be used to explicitly find particular types of solutions that are themselves invariant under a certain subgroup of the full symmetry group of the system. For example, solutions of an equation with partial derivatives of two independent variables, invariant under a given one-parameter symmetry group, are found by solving a system of ordinary differential equations. The class of solutions that are invariant with respect to a group includes many exact solutions that have immediate mathematical or physical meaning. In this paper, using the well-known infinitesimal generators of some symmetry groups of the two-dimensional heat conduction equation, solutions are found that are invariant with respect to these groups. First we consider the two-dimensional heat conduction equation with a source that describes the process of heat propagation in a flat region. For this case, a family of exact solutions was found, depending on an arbitrary constant. Then invariant solutions of the two-dimensional heat conduction equation without source are found.

  5. Проведено математическое моделирование процессов теплопереноса внутри замкнутой квадратной полости при наличии локального источника энергии полуцилиндрической формы. Проанализировано влияние расположения нагревателя на особенности эволюции гидродинамики. Рассматриваемая область представляла собой замкнутый квадратный контур, на нижней стенке которого располагался источник объемного тепловыделения, боковые стенки контура - изотермические. Представленная краевая задача была решена в безразмерных преобразованных переменных «функция тока-завихренность-температура» на основе метода конечных разностей. Проведены оценка влияния чисел Рэлея в диапазоне $10^{4}$-$10^{5}$, а также положения локального источника энергии на теплообмен внутри полости.

    Mathematical modeling of heat transfer processes inside a closed square cavity having a local heat source of a semi-cylindrical shape has been performed. The effect of the heater location on the evolution of flow structures has been analyzed. The considered cavity was a closed square contour with a heat-generating element located on the bottom wall. Side walls were considered as isothermal. The presented boundary problem has been formulated in dimensionless variables such as stream function-vorticity-temperature and it has been solved by a finite difference method. The effects of Rayleigh numbers in the range of $10^{4}$-$10^{5}$ and the position of the local energy source on heat exchange inside the cavity have been estimated.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref