Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Новизна в том, что лицо, принимающее решение (ЛПР) в многокритериальной задаче при неопределенности, стремится не только по возможности увеличить гарантированные значения каждого из своих критериев, но и одновременно уменьшить гарантированные риски, сопровождающие такое увеличение. Предлагаемое исследование выполнено на стыке теории многокритериальных задач (МЗ) и принципа минимаксного сожаления (риска) (ПМС) Сэвиджа-Ниханса: из теории МЗ использованы понятие слабо эффективной оценки и сопровождающая теорема Ю.Б. Гермейера, а из ПМС - оценка значения функции сожаления в качестве риска по Сэвиджу-Нихансу. Рассмотрение ограничено интервальными неопределенностями: о них ЛПР известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют (по тем или иным причинам). Введено новое понятие - сильно гарантированного по исходам и рискам решения (СГИР), максимального по Слейтеру; установлено его существование при «привычных» для математического программирования ограничениях (непрерывность критериев, компактность множеств стратегий и неопределенностей). В качестве приложения найден явный вид СГИР в задаче диверсификации вклада по рублевому и валютному депозитам.
многокритериальные задачи, сильная гарантия, максимум по Слейтеру и Парето, минимаксное сожаление, диверсификация вкладовThe applicability and novelty of this research lies in that the decision-maker in a multicriteria problem aims not only to maximize guaranteed values of each criterion, but also to minimize the guaranteed risks accompanying the said maximization. The topic of the research lies at the interface of the multicriteria problem theory and the Savage-Niehans minimax regret principle: the concept of a weakly effective estimate has been derived from the MP theory, while estimation of risks with values of the Savage-Niehans regret function has been derived from the minimax regret principle. The scope of this research is limited to interval uncertainties: the decision-maker only knows the limits of the interval, and probabilistic characteristics are missing. A new term is introduced, namely, “strongly guaranteed solution under outcomes and risks”; its existence for “regular”-confined-strategies for the mathematical programming is established. As an example of a practical application, the problem of diversification of a multi-currency deposit is suggested and solved.
-
В качестве математической модели конфликта рассматривается бескоалиционная игра Γ двух участников при неопределенности. О неопределенности известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют. Для оценки риска в Γ привлекается функция риска по Сэвиджу (из принципа минимаксного сожаления). Качество функционирования участников конфликта оценивается по двум критериям - исходам и рискам, при этом каждый из них стремится увеличить исход и одновременно уменьшить риск. На основе синтеза принципов минимаксного сожаления и гарантированного результата, равновесности по Нэшу и оптимальности по Слейтеру, а также решения иерархической двухуровневой игры по Штакельбергу формализуется понятие гарантированного по исходам (выигрышам) и рискам равновесия в Γ. Приведен пример. Затем устанавливается существование такого решения в смешанных стратегиях при обычных ограничениях в математической теории игр.
стратегии, ситуации, неопределенности, бескоалиционная игра, равновесность по Нэшу, максимум и минимум по СлейтеруAs a mathematical model of conflict the non-cooperation game Γ of two players under uncertainty is considered. About uncertainty only the limits of change are known. Any characteristics of probability are absent. To estimate risk in Γ we use Savage functions of risk (from principle of minimax regret). The quality of functioning of conflict's participants is estimated according to two criteria: outcomes and risks, at that each of the participants tries to increase the outcome and simultaneously to decrease the risk. On the basis of synthesis of principles of minimax regret and guaranteed result, Nash equilibrium and Slater optimality as well as solution of the two-level hierarchical Stackelberg game, the notion of guaranteed equilibrium in Γ (outcomes (prize) and risks) is formalized. We give the example. Then the existence of such a solution in mixed strategies at usual limits in mathematical game theory is established.
-
Рассматривается управляемая параболическая система, которая описывает нагрев заданного количества стержней. Функции плотности внутренних источников тепла стержней точно неизвестны, а заданы только отрезки их изменения. На концах стержней находятся управляемые источники тепла и помехи. Цель выбора управления заключается в том, чтобы привести вектор средних температур стержней в фиксированный момент времени на заданный компакт при любых допустимых функциях плотности внутренних источников тепла и любых допустимых реализациях помех. После замены переменных получена задача управления системой обыкновенных дифференциальных уравнений при наличии неопределенности. Используя численный метод, для этой задачи построено множество разрешимости. Выполнены модельные расчеты.
A controlled parabolic system that describes the heating of a given number of rods is considered. The density functions of the internal heat sources of the rods are not known exactly, and only the segments of their change are given. At the ends of the rods there are controlled heat sources and disturbances. The goal of the choice of control is to lead the vector of average temperatures of the rods at a fixed time to a given compact for any admissible functions of the density of internal heat sources and any admissible realizations of disturbances. After replacing variables, the problem of controlling a system of ordinary differential equations in the presence of uncertainty is obtained. Using a numerical method, a solvability set is constructed for this problem. Model calculations are carried out.
-
Работа посвящена развитию полиэдральных методов решения двух задач управления линейными многошаговыми системами с неопределенностями при фазовых ограничениях — задач терминального сближения и уклонения. Они возникают в системах с двумя управлениями, где цель одного — привести траекторию на заданное конечное множество в заданный момент времени, не нарушая фазовых ограничений, цель другого — противоположна. Предполагается, что конечное множество — параллелепипед, управления стеснены параллелотопозначными ограничениями, фазовые ограничения заданы в виде полос. Представлены методы решения обеих задач с использованием полиэдральных (параллелотопо- или параллелепипедо-значных) трубок. Методы решения задачи сближения предложены автором ранее, но здесь исследуются их дополнительные свойства. В частности, для случая без фазовых ограничений найдены гарантированные оценки для траектории, обеспечивающие ее нахождение внутри трубки. Даны удобные достаточные условия, гарантирующие получение невырожденных сечений в процессе вычислений. Для задачи уклонения сначала рассматривается общая схема решения, а затем предлагаются полиэдральные методы. Приводятся и сравниваются целые параметрические семейства внешних и внутренних полиэдральных оценок трубок разрешимости обеих задач. Приведен иллюстрирующий пример.
системы с неопределенностью, синтез управлений, задача сближения, задача уклонения, полиэдральные методы, параллелотопы, параллелепипеды
On solving terminal approach and evasion problems for linear discrete-time systems under state constraints, pp. 204-221The paper is devoted to elaboration of polyhedral techniques for solving two control problems for linear discrete-time systems with uncertainties under state constraints, namely, the terminal approach problem and the terminal evasion one. Such problems arise in systems with two controls, where the aim of the first is to steer the trajectory onto a given terminal set at a given instant without violating the state constraints, the aim of the other is opposite. It is assumed that the terminal set is a parallelepiped, the controls are bounded by parallelotope-valued constraints, and the state constraints are given in the form of so-called zones. We present techniques for solving both problems basing on polyhedral (parallelotope-valued or parallelepiped-valued) tubes. The techniques for solving the approach problem were proposed by the author earlier, but here additional properties of them are investigated. In particular, for the case without state constraints, guaranteed estimates are found for the trajectory that ensure that it is inside the tube. Convenient sufficient conditions are given to guarantee the obtaining of nondegenerate cross-sections during the calculations. For the evasion problem, a common solution scheme is considered, and then polyhedral techniques are proposed. The whole parametric families of external and internal polyhedral estimates for the solvability tubes for both problems are presented and compared. An illustrative example is given.
-
В статье для игр в нормальной формой при интервальной неопределенности вводится концепция сильного коалиционного равновесия. Эта концепция основана на синтезе трех понятий: индивидуальной рациональности, коллективной рациональности для игр в нормальной форме без побочных платежей и коалиционной рациональности. Для простоты изложения, сильное коалиционное равновесие рассматривается для игр 4 лиц при неопределенности. Достаточные условия существования сильного коалиционного равновесия в чистых стратегиях устанавливаются с помощью седловой точки специального вида свертки Гермейра. Наконец, следуя подходу Бореля, Неймана и Нэша, доказана теорема существования сильного коалиционного равновесия в смешанных стратегиях при стандартных для теории игр условиях (компактность и выпуклость множеств стратегий игроков, компактность множества неопределенностей и непрерывность функций выигрыша).
игры в нормальной форме, неопределенность, гарантии, смешанные стратегии, свертка Гермейера, седловая точка, равновесиеThe Strong Coalitional Equilibrium (SCE) is introduced for normal form games under uncertainty. This concept is based on the synthesis of the notions of individual rationality, collective rationality in normal form games without side payments, and a proposed coalitional rationality. For presentation simplicity, SCE is presented for 4-person games under uncertainty. Sufficient conditions for the existence of SCE in pure strategies are established via the saddle point of the Germeir's convolution function. Finally, following the approach of Borel, von Neumann and Nash, a theorem of existence of SCE in mixed strategies is proved under common minimal mathematical conditions for normal form games (compactness and convexity of players' strategy sets, compactness of uncertainty set and continuity of payoff functions).
-
Мягкий рациональный криволинейный интеграл, с. 578-596Теория мягких множеств — это новая область математики, которая имеет дело с неопределенностями. Приложения теории мягких множеств широко распространены в различных областях науки и социальных наук, таких как принятие решений, информатика, распознавание образов, искусственный интеллект и т.д. Важность мягких теоретико-множественных версий математического анализа ощущается в нескольких областях информатики. В этой статье предлагаются некоторые концепции мягкого градиента функции и мягкого интеграла, аналога криволинейного интеграла в классическом анализе. Установлены основные свойства мягких градиентов. Найдено необходимое и достаточное условие, при котором множество может быть подмножеством мягкого градиента некоторой функции. Доказано включение мягкого градиента в мягкий интеграл. Установлены полуаддитивность и положительная однородность мягкого интеграла. Получены оценки мягкого интеграла и размера его отрезка. Полуаддитивность относительно верхнего предела интегрирования доказана. Кроме того, эта статья расширяет теоретические развитие мягкого рационального криволинейного интеграла и связанных областей для повышения функциональности с точки зрения вычислительных систем.
Soft rational line integral, pp. 578-596Soft set theory is a new area of mathematics that deals with uncertainties. Applications of soft set theory are widely spread in various areas of science and social science viz. decision making, computer science, pattern recognition, artificial intelligence, etc. The importance of soft set-theoretical versions of mathematical analysis has been felt in several areas of computer science. This paper suggests some concepts of a soft gradient of a function and a soft integral, an analogue of a line integral in classical analysis. The fundamental properties of soft gradients are established. A necessary and sufficient condition is found so that a set can be a subset of the soft gradient of some function. The inclusion of a soft gradient in a soft integral is proved. Semi-additivity and positive uniformity of a soft integral are established. Estimates are obtained for a soft integral and the size of its segment. Semi-additivity with respect to the upper limit of integration is proved. Moreover, this paper enriches the theoretical development of a soft rational line integral and associated areas for better functionality in terms of computing systems.
-
Рассматривается задача управления параболической системой, которая описывает нагрев заданного количества стержней. Функции плотности внутренних источников тепла стержней точно неизвестны, а задан только отрезок их изменения. Управлением являются точечные источники тепла, которые находятся на концах стержней. Цель выбора управления заключается в том, чтобы в фиксированный момент времени модуль линейной функции, определяемой с помощью средних температур стержней, не превышал заданного значения при любых допустимых функциях плотности внутренних источников тепла. Разработана методика сведения этой задачи к одномерной задаче управления при наличии неопределенности. Найдены необходимые и достаточные условия окончания.
The problem of control of a parabolic system, which describes the heating of a given number of rods, is considered. The density functions of the internal heat sources of the rods are not exactly known, and only the segment of their change is given. Control are point heat sources that are located at the ends of the rods. The goal of the choice of control is to ensure that at a fixed time the modulus of the linear function determined using the average temperatures of the rods does not exceed the given value for any admissible functions of the density of internal heat sources. A technique has been developed for reducing this problem to a one-dimensional control problem under uncertainty. Necessary and sufficient termination conditions are found.
-
Каким образом вкладчику распределить в банке свой вклад между рублевым и двумя валютными депозитами (в долларах и евро), чтобы через год получить наибольший доход? Причем вкладчику, естественно, неизвестен курс каждой из валют в конце года и ориентируется он лишь на коридор изменения такого курса. Ответ на этот вопрос кроется в распределении между депозитами лишь одного рубля. Решению последней задачи для рискофоба и посвящена предлагаемая статья.
In what way the depositor should allocate his deposit in the bank taking into account one-rouble deposit and two currency deposits (in dollars and euro) in order to get the largest income in a year? The rate of exchange in the end of the year is unknown as a rule and the depositor orients himself towards the boundaries of changing of such rate. The allocation between the deposits of one ruble only is the answer of the question. The article which we suggest is devoted to the solution of the latter problem for a riskofob.
-
Дискретное управление нелинейной системой с неточной информацией в условиях воздействия помехи, с. 155-166Рассматривается задача стабилизации около нуля в условиях воздействия помехи и неточных данных в терминах дифференциальной игры преследования. Динамика описывается нелинейной автономной системой дифференциальных уравнений. Множество значений управлений преследователя является конечным, убегающего (помехи) — компакт. Целью управления, то есть целью преследователя, является приведение, в рамках конечного времени, траектории в любую наперед заданную окрестность некоторого шара с центром в нуле и ненулевым радиусом вне зависимости от действий помехи. Управление преследователя определяется в дискретные моменты времени на основании момента разбиения и значения из фазового пространства, которое равно сумме фазовых координат в момент разбиения и значения некоторой вспомогательной функции. Значение вспомогательной функции ограничено по норме наперед заданной величиной, которая считается известной преследователю. В работе получены условия соотношения параметров задачи и числа, которое ограничивает норму вспомогательной функции, позволяющие осуществить поимку в указанном смысле. Выигрышное управление строится конструктивно и использует фиксированный шаг разбиения временного интервала. Кроме того, получена оценка времени поимки.
Discrete control of nonlinear system with uncertain information under disturbance conditions, pp. 155-166The problem of stabilization around zero under disturbance and uncertain data in terms of differential pursuit game is considered. The dynamics are described by a nonlinear autonomous system of differential equations. The set of control values of the pursuer is finite, and that of the evader (interference) is compact. The goal of the control, that is, the goal of the pursuer, is to bring, within a finite time, the trajectory to any predetermined neighborhood of some ball centered at zero and a non-zero radius, regardless of the actions of the interference. The pursuer's control is determined at discrete moments of time on the basis of the partition moment and the value from the state space, which is equal to the sum of state coordinates at the partition moment and the value of some auxiliary function. The value of the auxiliary function is restricted by the norm by a predetermined value, which is considered to be known to the pursuer. In this paper, we obtain conditions for the relationship between the parameters of the problem and the number that limits the norm of the auxiliary function, allowing for capture in the specified sense. The winning control is constructed constructively and uses a fixed step of dividing the time interval. In addition, an estimate of the capture time is obtained.
-
В работе разрабатывается метод, именуемый «размыкание предиката», сводящий задачу поиска множества истинности предиката к задаче поиска множества неподвижных точек некоторого (вообще говоря, многозначного) отображения. Предлагаемая техника дает дополнительные возможности анализа задач и построения решений путем систематического привлечения результатов теории неподвижных точек. Даны формальное определение операции размыкания предиката, способы построения и исчисления размыкающих отображений и их основные свойства. В случае когда область определения предиката частично упорядочена, указаны способы построения размыкающих функций, обладающих свойством сужаемости. Это позволило получить представления интересующих элементов решения в виде итерационных пределов. Предлагаемый подход в силу абстрактности имеет широкую сферу применения. Вместе с тем эффективность полученного решения зависит от специфики рассматриваемой задачи и выбранного варианта реализации метода. В качестве иллюстрации в работе рассмотрена процедура построения размыкающего отображения для предиката «быть неупреждающим селектором». На основе этого отображения получено выражение для наибольшего неупреждающего селектора заданной мультифункции.
We consider an approach to constructing a non-anticipating selection of a multivalued mapping; such a problem arises in control theory under conditions of uncertainty. The approach is called “unlocking of predicate” and consists in the reduction of finding the truth set of a predicate to searching fixed points of some mappings. Unlocking of predicate gives an extra opportunity to analyze the truth set and to build its elements with desired properties. In this article, we outline how to build “unlocking mappings” for some general types of predicates: we give a formal definition of the predicate unlocking operation, the rules for the construction and calculation of “unlocking mappings” and their basic properties. As an illustration, we routinely construct two unlocking mappings for the predicate “be non-anticipating mapping” and then on this base we provide the expression for the greatest non-anticipating selection of a given multifunction.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.