Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'incompressible fluid flow':
Найдено статей: 8
  1. Рассмотрена математическая модель дозвуковых нестационарных турбулентных течений несжимаемого газа, основанная на методе крупных вихрей. Приводятся описания модели подсеточной турбулентности и вычислительного алгоритма, представлены результаты параметрических расчетов турбулентных течений несжимаемого газа в прямоугольном канале при различных числах Рейнольдса.

    The Large Eddy Simulation mathematical model for the subsonic unsteady turbulent flow of incompressible gas has been considered. The subgrid turbulence model, computational algorithm and numerical results of parametrical study of incompressible gas flow of in square channel under various Reynolds numbers has been presented.

  2. Разработана осесимметрическая модель на основе упрощенных уравнений вязкой жидкости для исследования двухслойного течения со свободной границей, создаваемого подъемом жесткого блока фундамента. Получено численное решение полной нелинейной системы и выполнен анализ малых возмущений движения границ слоев. Основной результат заключается в том, что кольцевая структура образуется на поверхности жидкости, если плотность нижнего слоя больше, чем у верхнего. Предлагаемая модель может представлять интерес для геофизики при изучении процесса образования крупномасштабных кольцевых структур на поверхности Земли и других планет.

    The axisymmetric model based on simplified equations of incompressible viscous fluid is developed to investigate the evolution of free-surface two-layered creeping flow subjected by the uplift of the substrate's block. We numerically solve the nonlinear governing equations and perform the small-amplitude analysis of the behavior of both fluid interfaces. The main result is that a ring pattern does occur on the upper surface provided that the density of the lower layer is greater then that of the upper one. The presented model may be of interest for geophysics to study large-scale ring structures on the Earth and other solid planets.

  3. Описаны результаты линейного анализа устойчивости плоскопараллельного течения несжимаемой жидкости над слоем насыщенной пористой среды при различных значениях ее пористости. Рассматривается ограниченная двухслойная система, состоящая из слоя однородной недеформируемой пористой среды конечной толщины и слоя несжимаемой однородной жидкости над ним. Пористый слой ограничен снизу твердой стенкой, верхняя граница жидкости рассматривается как свободная, но недеформируемая. Выполнен анализ линейной устойчивости стационарного течения в такой системе в условиях существования бимодальной нейтральной кривой и варьировании пористости нижнего слоя. Продемонстрирован переход между двумя основными модами неустойчивости: длинноволновой, связанной с точками перегиба в профиле течения, и коротковолновой, обусловленной большим поперечным градиентом скорости течения вблизи границы раздела жидкости и пористой среды. Уменьшение пористости влечет стабилизацию длинноволновых возмущений без существенного изменения критического волнового числа. Коротковолновые возмущения при этом дестабилизируются, а их критическое волновое меняется в широких пределах. При значении пористости меньше 0.7 инерционные слагаемые в уравнении фильтрации и величина механических напряжений на границе раздела возрастают настолько, что доминирующим механизмом развития неустойчивости становится аналог неустойчивости Кельвина-Гельмгольца. В узком интервале пористости реализуется полоса устойчивости течения, разделяющая ветви нейтральной кривой.

    The stability of incompressible fluid plane-parallel flow over a layer of a saturated porous medium is studied. The results of a linear stability analysis are described at different porosity values. The considered system is bounded by solid wall from the porous layer bottom. Top fluid surface is free and rigid. A linear stability analysis of plane-parallel stationary flow is presented. It is realized for parameter area where the neutral stability curves are bimodal. The porosity variation effect on flow stability is considered. It is shown that there is a transition between two main instability modes: long-wave and short-wave. The long-wave instability mechanism is determined by inflection points within the velocity profile. The short-wave instability is due to the large transverse gradient of flow velocity near the interface between liquid and porous medium. Porosity decrease stabilizes the long wave perturbations without significant shift of the critical wavenumber. Simultaneously, the short-wave perturbations destabilize, and their critical wavenumber changes in wide range. When the porosity is less than 0.7, the inertial terms in filtration equation and magnitude of the viscous stress near the interface increase to such an extent that the Kelvin-Helmholtz analogue of instability becomes the dominant mechanism for instability development. The stability band realizes in narrow porosity area. It separates the two branches of the neutral curve.

  4. Рассматривается движение жидкости, вызванное взаимодействием набегающей гравитационной волны, распространяющейся по свободной поверхности слоя вязкой несжимаемой жидкости, с круговым цилиндром, имеющим вертикальные образующие. Нелинейная краевая задача, описывающая такое движение, сведена к задаче для вертикальной компоненты вектора скорости, которая представляется в виде суммы потенциальной и вихревой составляющей. Получено решение данной задачи для случая колебаний малой амплитуды. Проведено сравнение поля скоростей для вязкой и идеальной жидкости.

    The motion of fluid due to the interaction of an incident gravitational wave spreading on the surface of viscous incompressible fluid with a circular cylinder having vertical elements is considered. A nonlinear boundary-value problem is reduced to determining the vertical component of a velocity vector represented by a sum of potential and rotational parts. The problem is solved for the small-amplitude oscillations. The comparison of the velocity field between the ideal and viscous liquids is made.

  5. Копысов С.П., Тонков Л.Е., Чернова А.А., Сармакеева А.С.
    Моделирование взаимодействия с преградой потока несжимаемой жидкости методами VOF и SPH, с. 405-420

    Рассматриваются методы моделирования взаимодействия потока несжимаемой жидкости и преграды в рамках эйлерова (метод объема жидкости в ячейке, Volume of Fluid - VOF) и лагранжева (метод гидродинамики сглаженных частиц, Smoothed Particle Hydrodynamics - SPH) описаний. На примере решения задач о движении потока жидкости, вызванного распадом начального уровня жидкости (задача о разрушении плотины), оцениваются преимущества и недостатки применения метода SPH для моделирования гидродинамических нагрузок на преграду, развитой свободной поверхности и каплеобразования. Определяется влияние способа конкретной численной реализации граничных условий Дирихле на твердых стенках на величину давления и характер ее изменения во времени. Численные результаты, полученные с использованием методов VOF и SPH, сопоставляются с известными экспериментальными данными.

    Kopysov S.P., Tonkov L.E., Chernova A.A., Sarmakeeva A.S.
    Modeling of the incompressible liquid flow interaction with barriers using VOF and SPH methods, pp. 405-420

    The paper considers the methods of modeling of the incompressible fluid flow interaction with barriers in Euler formulation (volume of fluid - VOF) and Lagrangian (smoothed particle hydrodynamics - SPH) description. By the example of solving the problems of motion of the fluid flow caused by the collapse of the initial liquid level (dam break problem), the authors estimate advantages and disadvantages of using the SPH method for the simulation of hydrodynamic loads, free-form surface and formation of drops. The influence of the specific numerical implementation of the Dirichlet boundary conditions on solid walls on both the pressure magnitude and its time behavior is determined. Numerical results obtained by the methods of VOF and SPH are compared with known experimental data.

  6. В статье рассматривается модельная задача несжимаемого течения жидкости и переноса тепла в коротком плоском канале с обратным уступом. Цель работы состоит в исследовании влияния граничного условия для потока тепла (температуры) на выходе из канала на характеристики теплопереноса внутри канала. Система уравнений Навье-Стокса и баланса тепла решаются численно с использованием равномерной сетки разрешением $6001\times301$ узлов. Для разностной аппроксимации пространственных производных используется метод контрольного объема второго порядка. Достоверность получаемых решений подтверждена для широкого диапазона числа Рейнольдса $(100 \leqslant \text{Re} \leqslant 1000)$ и числа Прандтля $\text{Pr} = 0.71$ путем сравнения с экспериментальными и теоретическими результатами, найденными в литературе. Анализируются картины течения, поля изотерм перегрева потока и поведение локального числа Нуссельта вдоль нагретой нижней стенки канала в зависимости от выбора выходного граничного условия для потока тепла (температуры). Показано, что этот выбор может оказать существенное влияние на характер прогрева течения внутри всего канала. По результатам исследования выбор сделан в пользу нелинейного граничного условия.

    A test problem of the laminar steady incompressible flow and heat transfer over backward-facing step in a 2D short channel is presented. The focus of the study is on the changes in heat transfer characteristics of the flow field inside the channel due to different boundary conditions for heat flux at the outflow border of the domain. The Navier-Stokes equations in a velocity-pressure formulation and energy equation are numerically solved using a uniform grid of $6001\times301$ points. The control-volume technique for the second-order difference approximation for spatial derivatives is used. The solutions were validated for a wide range of Reynolds numbers $(100 \leqslant \text{Re} \leqslant 1000)$ and Prandtl number $\text{Pr} = 0.71$, comparing them to experimental and numerical results found in the literature. The isotherm patterns and behaviors of Nusselt number along the heated bottom wall of the channel are examined. The study results showed that a condition for the heat flow (temperature) at the outlet border can influence the heat transfer in the whole domain. The nonlinear boundary condition for temperature at the outflow border is claimed as the best.

  7. Рассмотрены закрученные ламинарные осесимметричные течения вязких несжимаемых жидкостей в потенциальном поле массовых сил. Исследования течений осуществляются в цилиндрической системе координат. В течениях отдельно рассматриваются области, в которых осевая производная окружной скорости не может принимать нулевое значение в какой-нибудь открытой окрестности (существенно закрученные течения), и области, в которых эта производная равна нулю (область со слоистой закруткой). Показано, что для областей со слоистой закруткой можно применять известный метод (метод вязких вихревых доменов), разработанный для незакрученных течений. Для существенно закрученных течений получена формула для вычисления радиально-осевой скорости воображаемой жидкости через окружную компоненту завихренности, окружную циркуляцию реальной жидкости и частные производные этих функций. Частицы этой воображаемой жидкости «переносят» вихревые трубки радиально-осевой составляющей завихренности с сохранением интенсивности этих трубок, а также «переносят» величину окружной циркуляции и произведение окружной составляющей завихренности на некоторую функцию расстояния до оси симметрии. Предложен неинтегральный способ восстановления поля скорости по полю завихренности. Он сводится к решению системы линейных алгебраических уравнений с двумя переменными. Полученный результат предлагается использовать для распространения метода вязких вихревых доменов на закрученные осесимметричные течения.

    Swirling laminar axisymmetric flows of viscous incompressible fluids in a potential field of body forces are considered. The study of flows is carried out in a cylindrical coordinate system. In the flows, the regions in which the axial derivative of the circumferential velocity cannot take on zero value in some open neighborhood (essentially swirling flows) and the regions in which this derivative is equal to zero (the region with layered swirl) are considered separately. It is shown that a well-known method (the method of viscous vortex domains) developed for non-swirling flows can be used for regions with layered swirling. For substantially swirling flows, a formula is obtained for calculating the radial-axial velocity of an imaginary fluid through the circumferential vorticity component, the circumferential circulation of a real fluid, and the partial derivatives of these functions. The particles of this imaginary fluid “transfer” vortex tubes of the radial-axial vorticity component while maintaining the intensity of these tubes, and also “transfer” the circumferential circulation and the product of the circular vorticity component by some function of the distance to the axis of symmetry. A non-integral method for reconstructing the velocity field from the vorticity field is proposed. It is reduced to solving a system of linear algebraic equations in two variables. The obtained result is proposed to be used to extend the method of viscous vortex domains to swirling axisymmetric flows.

  8. В работе рассматриваются результаты решения задачи стационарного течения вязкой несжимаемой жидкости в плоском канале с обратным уступом и прогреваемой нижней стенкой в широком диапазоне числа Рейнольдса $100\leqslant \text{Re}\leqslant 1000$ и параметра расширения потока $1.11 \leqslant ER \leqslant 10$. Исследование выполнено путем численного интегрирования системы двумерных уравнений Навье-Стокса в переменных «скорость-давление» на равномерных сетках с шагом 1/300. Достоверность полученных результатов подтверждается их сравнением с литературными данными. Приводятся подробные картины течения и перегрева жидкости в зависимости от двух основных параметров задачи: $\text{Re}$ и $ER$. Показывается, что с одновременным ростом параметров $\text{Re}$ и $ER$ существенно усложняется структура течения - увеличиваются количество вихрей и их размеры вплоть до образования вихря за уступом с двумя центрами вращения. Также показывается, что характерная высота зоны прогрева течения слабо зависит от $\text{Re}$ и $ER$ и в конечном счете ближе к выходу из канала составляет приблизительно половину его высоты. Для всех центров вихрей определяются их основные характеристики: координаты, экстремумы функции тока, завихренности. Анализируется сложное немонотонное поведение профилей коэффициентов трения, сопротивления и теплоотдачи (числа Нуссельта) по длине канала. Показывается, что эти коэффициенты в одинаковой степени сильно зависят как от числа Рейнольдса, так и от параметра расширения канала, достигая своих максимальных значений при максимальных значениях $\text{Re}$ и $ER$.

    The paper deals with the results of solving the problem of steady-state flow of a viscous incompressible fluid in a plane channel with a backward-facing step and a heated bottom wall for the Reynolds number in the range $100\leqslant \text{Re}\leqslant1000$ and the expansion ratio of a plane channel in the range $1.11 \leqslant ER \leqslant 10$. The study was carried out by numerical integration of the 2-D Navier-Stokes equations in velocity-pressure formulation on uniform grids with a step which equals to 1/300. Correction of the results is confirmed by comparing them with the literature data. Detailed flow patterns and fields of stream overheating depending on two basic parameters of the problem $\text{Re}$ and $ER$ are demonstrated. It is shown that with the increase of parameters $\text{Re}$ and $ER$ the structure of flow becomes much more complicated, that is, there is an increase of the number of vortices and their sizes up to the formation of a vortex behind the backward-facing step with two centers of rotation. It is also stated that the typical height of the heating zone of the flow depends weakly on $\text{Re}$ and $ER$ and eventually, near the exit of the channel, equals approximately half of the channel height. For all centers of vortices their main characteristics are defined: location, extremums of stream function, vorticity. Complex nonmonotonic behaviors of the coefficients of friction, hydrodynamic resistance and heat transfer (Nusselt number) along the channel are analyzed. It is shown that these coefficients strongly depend both on Reynolds number and on expansion ratio, reaching the maximum values at the maximum values of $\text{Re}$ and $ER$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref