Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.
The paper is concerned with the problem of absolute continuity of the spectrum of the two-dimensional generalized periodic Schrodinger operator $H_g+V=-\nabla g\nabla+V$ where the continuous positive function $g$ and the scalar potential $V$ have a common period lattice $\Lambda$. The solutions of the equation $(H_g+V)\varphi=0$ determine, in particular, the electric field and the magnetic field of electromagnetic waves propagating in two-dimensional photonic crystals. The function $g$ and the scalar potential $V$ are expressed in terms of the electric permittivity $\varepsilon$ and the magnetic permeability $\mu$ ($V$ also depends on the frequency of the electromagnetic wave). The electric permittivity $\varepsilon$ may be a discontinuous function (and usually it is chosen to be piecewise constant) so the problem to relax the known smoothness conditions on the function $g$ that provide absolute continuity of the spectrum of the operator $H_g+V$ arises. In the present paper we assume that the Fourier coefficients of the functions $g^{\pm\frac12}$ for some $q\in[1, \frac43)$ satisfy the condition $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$, and the scalar potential $V$ has relative bound zero with respect to the operator $-\Delta$ in the sense of quadratic forms. Let $K$ be the fundamental domain of the lattice $\Lambda$, and assume that $K^*$ is the fundamental domain of the reciprocal lattice $\Lambda^*$. The operator $H_g+V$ is unitarily equivalent to the direct integral of operators $H_g(k)+V$, with quasimomenta $k\in 2\pi K^*$, acting on the space $L^2(K)$. The last operators can be also considered for complex vectors $k+ik'\in \mathbb{C}^2$. We use the Thomas method. The proof of absolute continuity of the spectrum of the operator $H_g+V$ amounts to showing that the operators $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, are invertible for some appropriately chosen complex vectors $k+ik'\in \mathbb{C}^2$ (depending on $g$, $V$, and the number $\lambda$) with sufficiently large imaginary parts $k'$.
-
В предыдущих работах авторов на множестве всех бинарных отношений множества $X$ введено понятие бинарного рефлексивного отношения смежности и определена алгебраическая система, состоящая из всех бинарных отношений множества $X$ и из всех неупорядоченных пар смежных бинарных отношений. Если $X$ - конечное множество, то эта алгебраическая система - граф (граф бинарных отношений $G$). В настоящей работе для ациклических и транзитивных орграфов вводится понятие опорного множества: это совокупности $S(\sigma)$ и $S'(\sigma)$, состоящие из вершин орграфа $\sigma\in G$, имеющих нулевую полустепень захода и исхода соответственно. Доказано, что если $G_\sigma$ - связная компонента графа $G$, содержащая ациклический или транзитивный орграф $\sigma\in G$, то $\{S(\tau): \tau\in G_\sigma\}=\{S'(\tau): \tau\in G_\sigma\}$. Получена формула для числа транзитивных орграфов, имеющих фиксированное опорное множество. Аналогичная формула для числа ациклических орграфов, имеющих фиксированное опорное множество, получена авторами ранее.
On support sets of acyclic and transitive digraphs, pp. 153-161In previous works of the authors, the concept of a binary reflexive adjacency relation was introduced on the set of all binary relations of the set $X$, and an algebraic system consisting of all binary relations of the set $X$ and of all unordered pairs of adjacent binary relations was defined. If $X$ is a finite set, then this algebraic system is a graph (graph of binary relations $G$). The current paper introduces the notion of a support set for acyclic and transitive digraphs. This is the collections $S(\sigma)$ and $S'(\sigma)$ consisting of the vertices of the digraph $\sigma\in G$ that have zero indegree and zero outdegree, respectively. It is proved that if $G_\sigma $ is a connected component of the graph $G$ containing the acyclic or transitive digraph $\sigma\in G$, then $\{S(\tau): \tau\in G_\sigma\}=\{S'(\tau): \tau\in G_\sigma\}$. A formula for the number of transitive digraphs having a fixed support set is obtained. An analogous formula for the number of acyclic digraphs having a fixed support set was obtained by the authors earlier.
-
Оптимизация средней временной выгоды для вероятностной модели популяции, подверженной промыслу, с. 48-58Рассматривается модель популяции, подверженной промыслу, в которой размеры промысловых заготовок являются случайными величинами. При отсутствии эксплуатации развитие популяции описывается логистическим уравнением $\dot x =(a-bx)x,$ где коэффициенты $a$ и $b$ являются показателями роста популяции и внутривидовой конкуренции соответственно, а в моменты времени $\tau_k=kd$ из популяции извлекается некоторая случайная доля ресурса $\omega_k,$ $k=1,2,\ldots.$ Предполагаем, что имеется возможность влиять на процесс сбора ресурса таким образом, чтобы остановить заготовку в том случае, когда ее доля окажется достаточно большой (больше некоторого значения $u_k\in (0,1)$ в момент $\tau_k$), чтобы сохранить возможно больший остаток ресурса для увеличения размера следующего сбора. Исследуется задача оптимального способа эксплуатации популяции $\bar u=(u_1,\dots,u_k,\dots),$ при котором добываемый ресурс постоянно восстанавливается и значение средней временной выгоды можно оценить снизу по возможности наибольшим числом. Показано, что при недостаточном ограничении доли добываемого ресурса значение средней временной выгоды может равняться нулю для всех или для почти всех значений случайных параметров. Рассматривается также следующая задача: пусть задано значение $u\in(0,1),$ которым мы ограничиваем случайную долю ресурса $\omega_k,$ добываемого из популяции в моменты времени $\tau_k$, $k=1,2,\ldots.$ Требуется найти минимальное время между соседними изъятиями, необходимое для восстановление ресурса, чтобы можно было производить добычу до тех пор, пока доля извлеченного ресурса не достигнет значения $u$.
Optimization of average time profit for a probability model of the population subject to a craft, pp. 48-58We consider the model of population subject to a craft, in which sizes of the trade preparations are random variables. In the absence of operation the population development is described by the logistic equation $\dot x = (a-bx) x,$ where coefficients $a $ and $b $ are indicators of growth of population and intraspecific competition respectively, and in time moments $ \tau_k=kd$ some random share of a resource $\omega_k,$ $k=1,2, \ldots,$ is taken from population. We assume that there is a possibility to exert influence on the process of resource gathering so that to stop preparation in the case when its share becomes big enough (more than some value $u_k\in (0,1)$ in the moment $\tau_k$) in order to keep the biggest possible rest of a resource and to increase the size of next gathering. We investigate the problem of an optimum way to control population $ \bar u = (u_1, \dots, u_k, \dots)$ at which the extracted resource is constantly renewed and the value of average time profit can be lower estimated by the greatest number whenever possible. It is shown that at insufficient restriction of a share of the extracted resource the value of average time profit can be equaled to zero for all or almost all values of random parameters. We also consider the following problem: let a value $u\in (0,1)$ be given, by which we limit a random share of a resource $ \omega_k, $ extracted from population in time moments $\tau_k,$ $k=1,2, \ldots .$ It is required to find minimum time between neighboring withdrawals, necessary for resource renewal, in order to make it possible to do extractions until the share of the taken resource does not reach the value $u$.
-
В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных дифференциальных систем на положительной полуоси. На множестве ненулевых решений систем установлены соотношения между этими показателями колеблемости. Доказано, что все сильные показатели колеблемости (в отличие от частот Сергеева смен знаков, нулей и корней, а также всех слабых показателей колеблемости), рассматриваемые как функции на множестве решений линейных однородных дифференциальных систем с непрерывными на полуоси коэффициентами, не являются остаточными (т.е. могут меняться при изменении решения на конечном отрезке). Кроме того, при любом наперед заданном натуральном $n\ge2$ приводится пример $n$-мерной дифференциальной системы, у которой все сильные показатели колеблемости некоторого решения не совпадают с соответствующими слабыми показателями. При этом все слабые и все сильные показатели на выбранном решении совпадают соответственно между собой. При доказательстве результатов настоящей работы отдельно рассмотрены случаи четности и нечетности $n$.
дифференциальные уравнения, линейные системы, колеблемость, число нулей, показатели колеблемости, частоты СергееваIn this paper, we study various types of exponents of oscillation (upper or lower, strong or weak) of zeros, roots, hyperroots, strict and non-strict signs of non-zero solutions of linear homogeneous differential systems on the positive semi-axis. On the set of non-zero solutions of autonomous systems the relations between these exponents of oscillation are established. It is proved that all strong exponents of oscillations (unlike Sergeev's frequencies of sign changes, zeros and roots, as well as all the weak exponents of oscillations) considered as functions on the set of solutions to linear homogeneous $n$-dimensional differential systems with continuous coefficients on the semi-line are not residual (i.e. can be changed when changing solution on a finite interval). Besides, at any beforehand given natural $n\ge2$ we give the example of $n$-dimensional differential system, for some solution of which all strong oscillation exponents differ from corresponding weak exponents. In this case, all weak and all strong exponents on the chosen solution coincide with each other, respectively. When proving the results of this work, the case of parity and odd $n$ are considered separately.
-
Рассматривается нелинейная механическая система, динамика которой описывается векторным дифференциальным уравнением типа Льенара. Предполагается, что коэффициенты данного уравнения могут переключаться с одного набора постоянных значений на другой, причем общее количество этих наборов, вообще говоря, бесконечное. Таким образом, для задания коэффициентов уравнения используются кусочно-постоянные функции с бесконечным числом точек разрыва на всей временной оси. Предлагается способ построения разрывной функции Ляпунова, с помощью которой исследуются достаточные условия асимптотической устойчивости нулевого положения равновесия изучаемого уравнения. Полученные результаты обобщаются на случай нестационарного уравнения Льенара с разрывными коэффициентами более общего вида. В качестве вспомогательного результата работы разрабатываются методы анализа вопроса знакоопределенности и подходы к получению оценок для алгебраических выражений, представляющих собой сумму слагаемых степенного вида с нестационарными коэффициентами. Ключевой особенностью исследования является отсутствие предположений об ограниченности указанных нестационарных коэффициентов или об их отделенности от нуля. Приводятся некоторые примеры, иллюстрирующие установленные результаты.
нелинейные механические системы, разрывные коэффициенты, асимптотическая устойчивость, функции ЛяпуноваA nonlinear mechanical system, whose dynamics is described by a vector ordinary differential equation of the Lienard type, is considered. It is assumed that the coefficients of the equation can switch from one set of constant values to another, and the total number of these sets is, in general, infinite. Thus, piecewise constant functions with infinite number of break points on the entire time axis, are used to set the coefficients of the equation. A method for constructing a discontinuous Lyapunov function is proposed, which is applied to obtain sufficient conditions of the asymptotic stability of the zero equilibrium position of the equation studied. The results found are generalized to the case of a nonstationary Lienard equation with discontinuous coefficients of a more general form. As an auxiliary result of the work, some methods for analyzing the question of sign-definiteness and approaches to obtaining estimates for algebraic expressions, that represent the sum of power-type terms with non-stationary coefficients, are developed. The key feature of the study is the absence of assumptions about the boundedness of these non-stationary coefficients or their separateness from zero. Some examples are given to illustrate the established results.
-
Исследуются спектральные свойства дискретного оператора Шредингера для бесконечной полосы с нулевыми граничными условиями. Доказано, что для малых убывающих потенциалов вблизи особенностей невозмущенной функции Грина (граничных точек подзон) возникают собственные значения и резонансы, найдена их асимптотика. Описана картина рассеяния; явление дифракции (рассеяние, главным образом, по конечному числу выделенных направлений) трансформируется в рассматриваемой квазиодномерной системе в волны во времени вероятностей прохождения и отражения. Получены простые формулы для данных вероятностей вблизи граничных точек подзон (это отвечает малым скоростям квантовой частицы) в случае малых потенциалов.
дискретный оператор Шредингера, квантовый волновод, собственное значение, резонанс, коэффициенты прохождения и отраженияWe investigate the spectral properties of the discrete Schrödinger operator for the infinite band with zero boundary conditions. We prove that the eigenvalues and resonances arise for the small decreasing potentials near singularities of the non-perturbed Green function (boundary points of the subbands) and we find their asymptotic behavior. The scattering picture is described: the diffraction (i.e. the scattering mainly in the finite number of preferential directions) transforms into probability waves in time of the reflection and propagation in the considered quasi-1D system. The simple formulas for these probabilities are obtained near boundary points of the subbands (this corresponds to small velocities of the quantum particles) for the small potentials.
-
В данной работе исследуются различные разновидности показателей колеблемости (верхние или нижние, сильные или слабые) нулей, корней, гиперкорней, строгих и нестрогих знаков ненулевых решений линейных однородных автономных дифференциальных систем на положительной полуоси. На множестве ненулевых решений автономных систем установлены соотношения между этими показателями колеблемости. Полностью изучены спектры показателей колеблемости автономных систем. Оказалось, что они напрямую зависят от корней соответствующего характеристического многочлена системы. Как следствие, найдены спектры всех показателей колеблемости автономных систем с симметричной матрицей. Доказано, что они состоят из одного нулевого значения. Кроме того, дано полное описание главных значений показателей колеблемости таких систем. Эти значения для показателей колеблемости нестрогих знаков, корней и гиперкорней совпали с множеством модулей мнимых частей собственных значений матрицы системы, а показатели колеблемости строгих знаков могут состоять из нуля и наименьшего по модулю из мнимых частей комплексных корней соответствующего характеристического многочлена.
дифференциальные уравнения, линейные системы, колеблемость, число нулей, показатели колеблемости, показатели Ляпунова
Properties of exponents of oscillation of linear autonomous differential system solutions, pp. 558-568In this paper, we study various types of exponents of oscillation (upper or lower, strong or weak) of zeros, roots, hyperroots, strict and non-strict signs of non-zero solutions of linear homogeneous autonomous differential systems on the positive semi-axis. On the set of non-zero solutions of autonomous systems the relations between these exponents of oscillation are established. The spectra of the exponents of autonomous systems' oscillation are fully studied. It turned out that they directly depend on the roots of the corresponding characteristic polynomial of the system. As a consequence, spectra of all exponents of oscillation of autonomous systems with symmetric matrix are found. It is proved that they consist of a single zero value. In addition, a full description of the main values of the exponents of oscillation of such systems is given. These values for the exponents of oscillation of non-strict signs, roots and hyperroots coincided with the set of modules of imaginary parts of the system matrix's eigenvalues, and the exponents of oscillation of strict signs can consist of zero and the least, in absolute magnitude, imaginary part of the complex roots of the corresponding characteristic polynomial.
-
Доказано, что общая кубическая форма над полем комплексных чисел преобразуется к виду без мономов от ровно двух переменных каждый посредством невырожденной линейной замены координат. Если коэффициенты при мономах от одной переменной равны единице, а остальные коэффициенты принадлежат достаточно маленькому полидиску около нуля, то преобразование может быть аппроксимировано с помощью итерационного алгоритма. При этих ограничениях тот же результат справедлив над полем вещественных чисел. Этот результат обобщает теорему Леви-Деспланка о матрицах со строгим диагональным преобладанием. Нами подробно рассмотрены свойства приводимых кубических форм. Так нами доказано существование приводимой вещественной кубической формы, которая не эквивалентна никакой форме со всеми мономами от ровно одной переменной и без мономов от ровно двух переменных каждый. Предложено достаточное условие существования особой точки на проективной кубической гиперповерхности. Обсуждается вычислительная сложность распознавания особых точек.
It is proved that a general cubic form over the field of complex numbers can be transformed into a form without monomials of exactly two variables by means of a non-degenerate linear transformation of coordinates. If the coefficients of monomials in only one variable are equal to one, and the remaining coefficients belong to sufficiently small polydisc near zero, then the transformation can be approximated by iterative algorithm. Under these restrictions the same result holds over the reals. This result generalizes the Levy-Desplanques theorem on strictly diagonally dominant matrices. We discuss in detail the properties of reducible cubic forms. So we prove the existence of a reducible real cubic form that is not equivalent to any form with all monomials in only one variable and without any monomials in exactly two variables. We suggest a sufficient condition for the existence of a singular point on a projective cubic hypersurface. The computational complexity of singular points recognition is discussed.
-
О движении динамически симметричного спутника в одном случае кратного параметрического резонанса, с. 594-612Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.
кратный параметрический резонанс, нормализация, нелинейные колебания, устойчивость, периодические движения, теория КАМ, спутник, цилиндрическая прецессия
On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance, pp. 594-612The paper studies the motions of a dynamically symmetric satellite (rigid body) relative to the center of mass in the central Newtonian gravitational field on a weakly elliptical orbit in the neighborhood of its stationary rotation (cylindrical precession). We consider the values of the parameters for which, in the limiting case of a circular orbit, one of the frequencies of small linear oscillations is equal to unity and the other is equal to zero, and the rank of the coefficient matrix of the linearized equations of the perturbed motion is equal to two, as well as a small neighborhood of this resonant point in the three-dimensional space of parameters. The resonant periodic motions of the satellite, analytical in fractional powers of a small parameter (the eccentricity of the orbit of the satellite's center of mass), are constructed. A rigorous nonlinear analysis of their stability is carried out. The methods of KAM theory are used to describe two- and three-frequency conditionally periodic motions of a satellite, with frequencies of different orders in a small parameter. A number of general theoretical issues concerning the considered multiple parametric resonance in Hamiltonian systems with two degrees of freedom that are close to autonomous and periodic in time are discussed. Several qualitatively different variants of parametric resonance regions are constructed. It is shown that in the general case the nature of nonlinear resonant oscillations of the system is determined by the first approximation system in a small parameter.
-
Исследуется система $N$ ротаторов с наложенной связью, заданной условием обращения в ноль суммы косинусов углов поворота. Сформулированы уравнения динамики и приведены результаты численного моделирования для случаев $N=3$, $4$ и $5$, которые отвечают геодезическим потокам на двумерном, трехмерном и четырехмерном многообразии в компактной области (в силу периодичности конфигурационного пространства по угловым переменным). Система из трех ротаторов демонстрирует хаос, характеризуемый наличием одного положительного показателя Ляпунова, а для систем из четырех и пяти элементов имеется, соответственно, два и три положительных показателя (гиперхаос). Реализован алгоритм, позволяющий вычислять секционную кривизну многообразия в ходе численного моделирования динамики в точках траектории. В случае $N=3$ кривизна двумерного многообразия отрицательна (за исключением конечного числа точек, где она нулевая), и реализуется геодезический поток Аносова. Для $N=4$ и $5$ расчеты показывают, что условие отрицательной секционной кривизны не выполнено. Также изложена методика и представлены результаты проверки гиперболичности на основе численного анализа углов между подпространствами векторов малых возмущений, причем в случае $N=3$ гиперболичность подтверждается, а для $N=4$ и $5$ нет.
A system of $N$ rotators is investigated with a constraint given by the condition of vanishing sum of the cosines of the rotation angles. Equations of the dynamics are formulated and results of numerical simulation for the cases $N=3$, $4$, and $5$ are presented relating to the geodesic flows on a two-dimensional, three-dimensional, and four-dimensional manifold, respectively, in a compact region (due to the periodicity of the configuration space in angular variables). It is shown that a system of three rotators demonstrates chaos, characterized by one positive Lyapunov exponent, and for systems of four and five elements there are, respectively, two and three positive exponents (“hyperchaos”). An algorithm has been implemented that allows calculating the sectional curvature of a manifold in the course of numerical simulation of the dynamics at points of a trajectory. In the case of $N=3$, curvature of the two-dimensional manifold is negative (except for a finite number of points where it is zero), and Anosov's geodesic flow is realized. For $N=4$ and $5$, the computations show that the condition of negative sectional curvature is not fulfilled. Also the methodology is explained and applied for testing hyperbolicity based on numerical analysis of the angles between the subspaces of small perturbation vectors; in the case of $N=3$, the hyperbolicity is confirmed, and for $N=4$ and $5$ the hyperbolicity does not take place.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.