Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'optimization':
Найдено статей: 90
  1. Представлена детализированная математическая модель радиально-поршневого пневмомотора для анализа динамических процессов и построения механических характеристик. Показан процесс выбора параметров с помощью программы многокритериальной оптимизации MOVI.

    The detail mathematical model of radial-piston pneumomotor for dynamic process analysis and calculate mechanical characteristics are presented. The procedure of parameters determine using the multicriterion optimization programme MOVI are shown.

  2. В статье исследуются свойства функции цены задачи оптимального управления на бесконечном горизонте с неограниченным подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Выводится оценка аппроксимации функции цены в задаче с бесконечным горизонтом значениями функции цены в задачах с удлиняющимся конечным горизонтом. Выявляется структура функции цены через значения стационарной функции цены, зависящей только от фазовой переменной. Дается описание асимптотики роста значений функции цены для функционалов качества различного вида, принятых в экономическом и финансовом моделировании: логарифмических, степенных, экспоненциальных, линейных. Устанавливается свойство непрерывности функции цены и выводятся оценки гёльдеровских параметров непрерывности. Полученные оценки необходимы для разработки сеточных алгоритмов построения функций цены в задачах оптимального управления с бесконечным горизонтом.

    The article investigates properties of the value function of the optimal control problem on infinite horizon with an unlimited integrand index appearing in the quality functional with a discount factor. The estimate is derived for approximating the value function in a problem with the infinite horizon by levels of value functions in problems with lengthening finite horizons. The structure of the value function is identified basing on stationary value functions which depend only on phase variables. The description is given for the asymptotic growth of the value function generated by various types of the quality functional applied in economic and financial modeling: logarithmic, power, exponential, linear functions. The property of continuity is specified for the value function and estimates are deduced for the Hölder parameters of continuity. These estimates are needed for the development of grid algorithms designed for construction of the value function in optimal control problems with infinite horizon.

  3. Кандоба И.Н., Козьмин И.В., Новиков Д.А.
    Численное исследование одной нелинейной задачи быстродействия, с. 429-444

    Обсуждаются вопросы построения допустимых управлений в одной задаче оптимального управления нелинейной динамической системой при наличии ограничений на ее текущее фазовое состояние. Рассматриваемая динамическая система описывает управляемое движение ракеты-носителя от точки старта до момента ее выхода на заданную околоземную эллиптическую орбиту. Задача заключается в построении программного управления, которое обеспечивает выведение ракетой-носителем на орбиту полезной нагрузки максимальной массы и выполнение дополнительных ограничений на текущее фазовое состояние системы. Дополнительные ограничения обусловлены необходимостью учитывать величины скоростного напора, углов атаки и скольжения при движении ракеты в плотных слоях атмосферы и осуществлять падение ее отделяемых частей в заданные районы на земной поверхности. Для ракет-носителей ряда классов такая задача равносильна нелинейной задаче быстродействия с фазовыми ограничениями. Предлагаются и численно исследуются два алгоритма построения в этой задаче допустимых управлений, обеспечивающих выполнение указанных дополнительных фазовых ограничений. Методологическую основу одного алгоритма составляет применение некоторого прогнозирующего управления, которое априори строится в задаче быстродействия без учета в ней дополнительных ограничений, а другого - использование специальных режимов управления. Приводятся результаты численного моделирования.

    Kandoba I.N., Koz'min I.V., Novikov D.A.
    Numerical investigation of a nonlinear time-optimal problem, pp. 429-444

    The questions of constructing admissible controls in a problem of optimal control of a nonlinear dynamic system under constraints on its current phase state are discussed. The dynamic system under consideration describes the controlled motion of a carrier rocket from the launching point to the time when the carrier rocket enters a given elliptic earth orbit. The problem consists in designing a program control for the carrier rocket that provides the maximal value of the payload mass led to the given orbit and the fulfillment of a number of additional restrictions on the current phase state of the dynamic system. The additional restrictions are due to the need to take into account the values of the dynamic velocity pressure, the attack and slip angles when the carrier rocket moves in dense layers of the atmosphere. In addition it is required to provide the fall of detachable parts of the rocket into specified regions on the earth surface. For carrier rockets of some classes, such a problem is equivalent to a nonlinear time-optimal problem with phase constraints. Two algorithms for constructing admissible controls ensuring the fulfillment of additional phase constraints are suggested. The numerical analysis of these algorithms is performed. The methodological basis of one algorithm is the application of some predictive control, which is constructed without taking into account the constraints above. Another algorithm is based on special control modes. The results of numerical modeling are presented.

  4. Рассматривается нелокальная граничная задача для управляемой системы с обратной связью, описываемой полулинейным функционально-дифференциальным включением дробного порядка с бесконечным запаздыванием в сепарабельном банаховом пространстве. Приводится общий принцип существования решений задачи в терминах отличия от нуля топологической степени соответствующего векторного поля. Доказывается конкретный пример (теорема 6) реализации этого общего принципа. Доказывается существование оптимального решения поставленной задачи, минимизирующего заданный полунепрерывный снизу функционал качества.

    Afanasova M.S., Obukhovskii V.V., Petrosyan G.G.
    On a generalized boundary value problem for a feedback control system with infinite delay, pp. 167-185

    We consider a non-local boundary value problem for a feedback control system described by a semilinear functional-differential inclusion of fractional order with infinite delay in a separable Banach space. The general principle of existence of solutions to the problem in terms of the difference from zero of the topological degree of the corresponding vector field is given. We prove a concrete example (Theorem 6) of the implementation of this general principle. The existence of an optimal solution to the posed problem is proved, which minimizes the given lower semicontinuous quality functional.

  5. Дифференциальные включения типа среднего поля возникают в рамках теории управления средним полем при овыпуклении правой части. Мы исследуем случай, когда правая часть дифференциального включения зависит от положения агента и от распределения всех агентов полунепрерывно. Основной результат статьи состоит в доказательстве существования и стабильности решений дифференциальных включений типа среднего поля. Также мы показываем полунепрерывную снизу зависимость функции цены задачи оптимального управления средним полем от начального состояния и параметра.

    Mean field type differential inclusions appear within the theory of mean field type control through the convexification of a right-hand side. We study the case when the right-hand side of a differential inclusion depends on the state of an agent and the distribution of agents in an upper semicontinuous way. The main result of the paper is the existence and the stability of the solution of a mean field type differential inclusion. Furthermore, we show that the value function of the mean field type optimal control problem depends on an initial state and a parameter semicontinuously.

  6. Исследуется задача мультипликативного управления для стационарной диффузионно-дрейфовой модели зарядки полярного диэлектрика. Роль управления играет старший коэффициент в уравнении модели, имеющий смысл коэффициента диффузии электронов. Глобальная разрешимость краевой задачи и локальная единственность ее решения, а также разрешимость экстремальной задачи доказана в предыдущих работах авторов. В настоящей работе для задачи управления выводится система оптимальности и устанавливаются условия локальной регулярности множителя Лагранжа. На основе анализа данной системы доказывается локальная единственность решения задачи мультипликативного управления для конкретных функционалов качества.

    The multiplicative control problem for a stationary diffusion-drift model of charging a polar dielectric is studied. The role of control is played by a leading coefficient in the model equation, which has the meaning of the electron diffusion coefficient. The global solvability of the boundary value problem and the local uniqueness of its solution, as well as the solvability of the extremum problem under consideration, have been proved in the previous papers of the authors. In this paper, an optimality system is derived for the control problem and local regularity conditions for the Lagrange multiplier are established. Based on the analysis of this system, the local uniqueness of the multiplicative control problem's solution for specific cost functionals is proved.

  7. В работе рассматривается задача оптимального управления одномерным процессом, заданным стохастическим дифференциальным уравнением, в котором управление воздействует как на коэффициент сноса, так и на коэффициент диффузии, при этом диффузионная составляющая линейна по управлению $$dx(t) = b(t,x(t),u(t))dt +\sigma(t,x(t))u(t)dW(t),\qquad x(0) = x_0.$$ Здесь $x(t)$ - фазовая координата, $u(t)$ - управляющая функция, $W(t)$ - винеровский процесс. Доказана теорема, которая предоставляет структуру решения рассматриваемого уравнения в виде суперпозиции функций $x(t)=Φ(t,u(t)W(t)+y(t))$, в котором $Φ(t,v)$ - известная функция, полностью определяющаяся коэффициентом $σ(t,x)$, и не зависит от управления, а $y(t)$ - решение потраекторно-детерминированного дифференциального уравнения с мерой вида

    $$dy(t) = B(t,y(t),u(t))dt - W(t)du(t).$$

    Выявленная структура решения позволяет вместо исходной стохастической задачи оптимального управления исследовать новую эквивалентную задачу с фазовой переменной $y(t)$, которая является потраекторно-детерминированной задачей оптимального импульсного управления. При детерминированном рассмотрении новой задачи решения последней могут оказаться упреждающими функциями, поэтому в работе предлагается метод, который позволяет добиться неупреждаемости оптимальных решений. Суть метода заключается в модификации функционала потерь в новой потраекторно-детерминированной задаче специальным образом подобранным интегральным слагаемым, которое позволяет гарантировать неупреждаемость решений.

    We consider an optimal control problem for a one-dimensional process driven by stochastic differential equation, which has both drift and diffusion coefficients controlled, diffusion being linear in control

    $$dx(t) = b(t,x(t),u(t))dt +\sigma(t,x(t))u(t)dW(t), \qquad x(0) = x_0,$$

    where $x(t)$ is the state variable, $u(t)$ is the control variable and $W(t)$ is the Wiener process. We prove a theorem which gives a structure of solution for the considered differential equation as a superposition of functions $x(t)=Φ(t,u(t)W(t)+y(t))$, where $Φ(t,v)$ is the known function, which is completely determined by the diffusion coefficient σ(t,x) and is independent of control, and $y(t)$ is the solution to the pathwise-deterministic measure-driven differential equation

    $$dy(t) = B(t,y(t),u(t))dt - W(t)du(t).$$

    The revealed structure of the solution enables us to consider a new pathwise-deterministic impulsive optimal control problem with the state variable $y(t)$ which is equivalent to the original stochastic optimal control problem. Pathwise problems may have anticipative solutions, so we propose a method that makes it possible to build nonanticipative optimal solutions. The basic idea of the method is to modify cost functional in new pathwise problem with special integral term, which guarantees nonanticipativity of solutions.

  8. В работе рассматривается игра патрулирования с двумя игроками — патрулирующим и атакующим. Цель первого игрока — охранять объект от злоумышленников, поймать атакующего. Цель второго — причинить урон охраняемому объекту и не стать пойманным. В данной статье охраняемым объектом выступают базовые станции сотовых компаний. Теоретико-игровая модель построена для решения задачи о нахождении начального распределения местоположения игроков по базовым станциям. При известной матрице перехода игроков по станциям в работе находятся оптимальные стратегии игроков и значение игры. Рассмотрена обратная задача — поиск оптимальных матриц перехода при известных начальных распределениях местоположения игроков. В такой постановке найдено равновесие по Нэшу, когда атакующий совершает две атаки.

    A patrolling game with two players, a patroller and an attacker, is considered in the paper. The aim of the former is to protect an object from intruders and catch the attacker. The aim of the latter is to cause damage to the protected object without being caught. Cellular base stations are viewed as protected objects. A game-theoretic model is constructed to find an initial distribution of players on base stations. When the transition matrix of players among the stations is known, an optimal strategy of players and the value of the game are calculated. An inverse problem of searching for optimal transition matrices with known initial distribution of players is studied. The Nash equilibrium with the attacker making two attacks is found for the considered problem.

  9. Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

    A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.

  10. Рассматривается задача оптимального управления системой бесконечного числа однотипных агентов. Пространство допустимых для агентов состояний является конечным. В рассматриваемой постановке имеется общий для всех агентов оптимизируемый функционал и общий центр управления, выбирающий стратегию для агентов. Предполагается, что выбираемая стратегия является позиционной. В настоящей работе рассматривается случай, когда динамика состояний агентов задается некоторой марковской цепью с непрерывным временем. Предполагается, что матрица Колмогорова этой цепи в каждом состоянии зависит от текущего состояния, выбранного управления и распределения всех агентов. Для такой задачи в работе показано, что решение в классе позиционных стратегий может быть построено на основе решения детерминированной задачи оптимального управления в конечномерном фазовом пространстве.

    We consider an optimal control problem for an infinite amount of agents of the same type. We assume that agents have a finite state space. The given formulation of the problem involves an objective functional that is common for all agents and a common control center that chooses a strategy for agents. A chosen strategy is supposed to be positional. In this paper we consider a case when the dynamics of agents is given by a Markov chain with continuous time. It is assumed that the Kolmogorov matrix of this chain in each state depends on the current state, the chosen control and the distribution of all agents. For the original problem, it is shown that concerning positional strategies the solution can be obtained through the solution of the deterministic control problem in a finite-dimensional phase space.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref