Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Для дифференциальной игры многих лиц найдены условия того, что заданное многозначное отображение в каждой точке есть множество выигрышей в ситуациях равновесия по Нэшу. Данное условие выписано в инфинитезимальной форме. Также найдены достаточные условия, при которых набор непрерывных функций обеспечивает равновесие по Нэшу. Данное условие обобщает метод, основанный на системе уравнений типа Гамильтона–Якоби.
Infinitesimal characterization of Nash equilibrium for differential games with many players, pp. 3-11We study Nash equilibrium for a differential game with many players. The condition on a multivalued map under which any value of this map is a set of Nash equilibrium payoffs is obtained. This condition is written in infinitesimal form. The sufficient condition for the given complex of continuous functions to provide a Nash equilibrium is obtained. This condition is a generalization of the method based on system of Hamilton–Jacobi equations.
-
Равновесие по Бержу в модели олигополии Курно, с. 147-156В работе построено равновесие по Бержу в модели олигополии Курно. Проведено сравнение равновесий по Бержу и по Нэшу. Выявлены условия, при которых выигрыши игроков в ситуации равновесия по Бержу больше, чем их выигрыши в ситуации равновесия по Нэшу.
In many large areas of the economy (such as metallurgy, oil production and refining, electronics), the main competition takes place among several companies that dominate the market. The first models of such markets - oligopolies were described more than a hundred years ago in articles by Cournot, Bertrand, Hotelling. Modeling of oligopolies continues in many modern works. Moreover, in 2014 Nobel Prize in Economics “for his analysis of market power and regulation in sectors with few large companies” was received by Jean Tirole - the author of one of the best modern textbooks on the theory of imperfect competition “The Theory of Industrial Organization”. The main idea of all these publications, studying the behavior of oligopolies, is that every company is primarily concerned with its profits. This approach meets the concept of Nash equilibrium and is actively used in modeling the behavior of players in a competitive market. The exact opposite of such “selfish” equilibrium is “altruistic” concept of Berge equilibrium. In this approach, each player, without having to worry about himself, choose his actions (strategies) trying to maximize the profits of all other market participants. This concept called Berge equilibrium appeared in Russia in 1994 in reference to the France Claude Berge monograph published in 1957. The first works on the concept of Berge equilibrium belong to K.S. Vaisman and V.I. Zhukovskii. Once outside Russia, the concept of “Berge equilibrium” is slowly gaining popularity. To day, the number of publications related to this balance is already measured in tens. However, all of these items are limited to purely theoretical issues, or, in general, to psychology applications. Works devoted to the study of Berge equilibrium in economic problems, were not seen until now. It's probably a consequence of Martin Shubik's review (“… no attention is paid to the application to the economy. … the book is of little interest for economists”) of the Berge's book, it “scared” economists for a long time. However, it is not so simple. In this article, Berge equilibrium is considered in Cournot oligopoly, its relation to Nash equilibrium is studied. Cases are revealed in which players gain more profit by following the concept of Berge equilibrium, than by using strategies dictated by Nash equilibrium.
-
В настоящей работе приведена модель анизотропного роста дендритных кристаллов из химически чистой и бинарной жидкости (раствора или расплава) с учетом вынужденной конвекции жидкой фазы. Представлены зависимости скорости роста и радиуса вершины дендрита от переохлаждения жидкости для случаев химически чистого материала и с учетом примесей. Дан сравнительный анализ влияния вынужденной конвекции на кинетику роста дендритов. Для оценки скорости роста и морфологии дендрита используется модель высокоскоростного роста дендритов, которая учитывает вклад конвективного потока и анизотропные свойства границы раздела кристалл-жидкость. В модели также используется гиперболическое уравнение диффузии для описания неравновесного захвата примеси поверхностью кристалла, которое возникает при быстром росте кристаллов.
The paper presents the model of anisotropic growth of dendritic crystallization of chemically pure and binary liquid (solution or melt) based on forced convection of the liquid phase. The dependencies of the growth rate and the radius of the top of a dendrite from under-cooling fluid in cases of a chemically pure material and alloys are presented. A comparative analysis of the influence of forced convection on the dendrite growth kinetics is carried out. Evaluation of growth rate and morphology of dendrite by high-speed crystal growth model was done. The contribution of convective flow and the anisotropic properties of the liquid-crystal boundary were taking into account. The model is also used hyperbolic diffusion equation to describe the non-equilibrium impurity capture by crystal surface, which occurs under the rapid crystals growth.
-
Работа посвящена исследованию равновесия по Нэшу в неантагонистической детерминированной дифференциальной игре двух лиц в классе рандомизированных стратегий. Предполагается, что игроки информированы об управлении своего партнера, реализовавшегося к текущему времени. Поэтому игра формализуется в классе рандомизированных квазистратегий. В работе получена характеризация множества выигрышей (пар ожидаемых выигрышей игроков) в ситуациях равновесия по Нэшу с использованием вспомогательных антагонистических игр. Показано, что множество выигрышей в ситуациях рандомизированного равновесия по Нэшу является выпуклой оболочкой множества выигрышей в классе детерминированных стратегий. Приведен пример, показывающий дополнительные возможности, которые возникают при переходе к рандомизированным стратегиям.
Randomized Nash equilibrium for differential games, pp. 299-308The paper is concerned with the randomized Nash equilibrium for a nonzero-sum deterministic differential game of two players. We assume that each player is informed about the control of the partner realized up to the current moment. Therefore, the game is formalized in the class of randomized non-anticipative strategies. The main result of the paper is the characterization of a set of Nash values considered as pairs of expected players' outcomes. The characterization involves the value functions of the auxiliary zero-sum games. As a corollary we get that the set of Nash values in the case when the players use randomized strategies is a convex hull of the set of Nash values in the class of deterministic strategies. Additionally, we present an example showing that the randomized strategies can enhance the outcome of the players.
-
В работе изучается влияние шума на модель ферментативной реакции Голдбетера, описывающую механизм колебательного синтеза циклического аденозинмонофосфата в клетке. Показано, что модель отличается высокой чувствительностью к вариациям параметров и начальных условий. Демонстрируется и исследуется явление стохастической возбудимости в зоне устойчивого равновесия. Показано, что воздействие шума приводит к резкому переходу от малоамплитудных стохастических осцилляций к спайковым колебаниям большой амплитуды. Для параметрического анализа этого явления используются техника функций стохастической чувствительности и метод доверительных эллипсов. Изучена зависимость критического значения интенсивности шума, при котором начинается генерация большеамплитудных колебаний, от близости управляющего параметра к точке бифуркации. Для детального анализа частотных свойств стохастических колебаний проведен статистический анализ межспайковых интервалов и обнаружено явление когерентного резонанса.
We study the influence of noise on the Goldbeter model of the enzymatic reaction, which describes the mechanism of oscillatory synthesis of cyclic adenosine monophosphate in a cell. It is shown that the model is highly sensitive to variations of parameters and initial conditions. The phenomenon of stochastic excitability in a stable equilibrium zone is demonstrated and studied. We show that the noise results in a sharp transition from low-amplitude stochastic oscillations to large-amplitude spike oscillations. For the parametric analysis of this phenomenon, the technique of stochastic sensitivity functions and the method of confidence ellipses are used. We study how the critical value of the noise intensity corresponding to the generation of large-amplitude oscillations depends on the proximity of a control parameter to a bifurcation point. For a detailed analysis of the frequency properties of stochastic oscillations, a statistical analysis of interspike intervals is carried out, and a phenomenon of coherent resonance is found.
-
В работе изучается влияние цветного шума на равновесные режимы нелинейных динамических систем. Для исследования реакции системы на малые возмущения используется асимптотический подход, развивающий технику функций стохастической чувствительности. Стохастическая чувствительность равновесия в общей многомерной динамической системе задается некоторой матрицей. Для этой матрицы стохастической чувствительности в работе получено матричное алгебраическое уравнений. Точное решение этого уравнения дается для важного класса нелинейных осцилляторов с возмущениями в форме цветных шумов. Эта теория применяется к параметрическому исследованию отклика электронного генератора с жестким возбуждением на цветные шумы с различным временем корреляции. В работе исследована зависимость дисперсии случайных состояний от характерного времени корреляции. Показано, что эта зависимость может быть немонотонной и иметь максимумы, соответствующие резонансам. В работе обсуждается вероятностный механизм стохастической генерации колебаний больших амплитуд, вызванной цветным шумом.
цветной шум, время корреляции, стохастическая чувствительность, электронный генератор, стохастическая возбудимостьThe influence of colored noise on the equilibrium regimes of nonlinear dynamical systems is investigated. To study the response of the system to small perturbations, we use an asymptotic approach that develops the stochastic sensitivity function technique. The stochastic sensitivity of equilibrium in a general multidimensional dynamical system is defined by some matrix. For this stochastic sensitivity matrix, we obtain a matrix algebraic equation. An exact solution of this equation is given for an important class of nonlinear oscillators with perturbations in the form of colored noises. This theory is applied to the parametric study of the response of the electronic generator with hard excitation to colored noises with various correlation times. The dependence of the dispersion of random states on the characteristic correlation time is investigated. It is shown that this dependence can be nonmonotonic and have maxima corresponding to the resonances. The paper discusses the probabilistic mechanism of the stochastic generation of large-amplitude oscillations caused by color noise.
-
В статье рассматриваются приближенные решения неантагонистических дифференциальных игр. Приближенное равновесие по Нэшу может быть построено по заданному решению вспомогательной стохастической игры с непрерывным временем. Мы рассматриваем случай, когда динамика вспомогательной игры задается марковской цепью с непрерывным временем. Для этой игры функция цены определяется решением системы обыкновенных дифференциальных включений. Таким образом, мы получаем конструкцию приближенного равновесия по Нэшу с выигрышами игроков, близкими к решениям системы обыкновенных дифференциальных включений. Также предложен способ построения марковской игры с непрерывным временем, аппроксимирующей исходную игру.
неантагонистические дифференциальные игры, приближенное равновесия по Нэшу, марковские игры, дифференциальные включенияThe paper is concerned with approximate solutions of nonzero-sum differential games. An approximate Nash equilibrium can be designed by a given solution of an auxiliary continuous-time dynamic game. We consider the case when dynamics is determined by a Markov chain. For this game the value function is determined by an ordinary differential inclusion. Thus, we obtain a construction of approximate equilibria with the players' outcome close to the solution of the differential inclusion. Additionally, we propose a way of designing a continuous-time Markov game approximating the original dynamics.
-
Поиск оптимального начального распределения местоположения игроков в игре патрулирования, с. 453-458В работе рассматривается игра патрулирования с двумя игроками — патрулирующим и атакующим. Цель первого игрока — охранять объект от злоумышленников, поймать атакующего. Цель второго — причинить урон охраняемому объекту и не стать пойманным. В данной статье охраняемым объектом выступают базовые станции сотовых компаний. Теоретико-игровая модель построена для решения задачи о нахождении начального распределения местоположения игроков по базовым станциям. При известной матрице перехода игроков по станциям в работе находятся оптимальные стратегии игроков и значение игры. Рассмотрена обратная задача — поиск оптимальных матриц перехода при известных начальных распределениях местоположения игроков. В такой постановке найдено равновесие по Нэшу, когда атакующий совершает две атаки.
A patrolling game with two players, a patroller and an attacker, is considered in the paper. The aim of the former is to protect an object from intruders and catch the attacker. The aim of the latter is to cause damage to the protected object without being caught. Cellular base stations are viewed as protected objects. A game-theoretic model is constructed to find an initial distribution of players on base stations. When the transition matrix of players among the stations is known, an optimal strategy of players and the value of the game are calculated. An inverse problem of searching for optimal transition matrices with known initial distribution of players is studied. The Nash equilibrium with the attacker making two attacks is found for the considered problem.
-
В качестве математической модели конфликта рассматривается бескоалиционная игра Γ двух участников при неопределенности. О неопределенности известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют. Для оценки риска в Γ привлекается функция риска по Сэвиджу (из принципа минимаксного сожаления). Качество функционирования участников конфликта оценивается по двум критериям - исходам и рискам, при этом каждый из них стремится увеличить исход и одновременно уменьшить риск. На основе синтеза принципов минимаксного сожаления и гарантированного результата, равновесности по Нэшу и оптимальности по Слейтеру, а также решения иерархической двухуровневой игры по Штакельбергу формализуется понятие гарантированного по исходам (выигрышам) и рискам равновесия в Γ. Приведен пример. Затем устанавливается существование такого решения в смешанных стратегиях при обычных ограничениях в математической теории игр.
стратегии, ситуации, неопределенности, бескоалиционная игра, равновесность по Нэшу, максимум и минимум по СлейтеруAs a mathematical model of conflict the non-cooperation game Γ of two players under uncertainty is considered. About uncertainty only the limits of change are known. Any characteristics of probability are absent. To estimate risk in Γ we use Savage functions of risk (from principle of minimax regret). The quality of functioning of conflict's participants is estimated according to two criteria: outcomes and risks, at that each of the participants tries to increase the outcome and simultaneously to decrease the risk. On the basis of synthesis of principles of minimax regret and guaranteed result, Nash equilibrium and Slater optimality as well as solution of the two-level hierarchical Stackelberg game, the notion of guaranteed equilibrium in Γ (outcomes (prize) and risks) is formalized. We give the example. Then the existence of such a solution in mixed strategies at usual limits in mathematical game theory is established.
-
Задача о равновесии пластины Тимошенко, содержащей трещину вдоль тонкого жесткого включения, с. 32-45Исследуются задачи о равновесии трансверсально-изотропной пластины с жесткими включениями. Предполагается, что пластина деформируется в рамках гипотез классической теории упругости. Задачи формулируются в виде минимизации функционала энергии пластины на выпуклом и замкнутом подмножестве пространства Соболева. Установлено, что предельный переход по геометрическому параметру в задачах о равновесии пластины с объемным включением приводит к задаче о пластине с тонким жестким включением. Исследован также случай отслоения тонкого жесткого включения - когда трещина в пластине расположена вдоль одного из берегов включения. В задаче о пластине с отслоившимся тонким включением на трещине задается нелинейное условие непроникания. Это условие имеет вид неравенства (типа Синьорини) и описывает взаимное непроникание противоположных берегов трещины. Для задачи с отслоившимся включением, при достаточной гладкости решения, установлена эквивалентность вариационной и дифференциальной формулировок. Также получены соотношения, описывающие контакт противоположных берегов трещины. Относительно каждой из рассмотренных вариационных задач установлена однозначная разрешимость.
трещина, пластина Тимошенко, жесткое включение, функционал энергии, вариационная задача, условие непроникания
The equilibrium problem for a Timoshenko plate containing a crack along a thin rigid inclusion, pp. 32-45We study the equilibrium problem of a transversely isotropic plate with rigid inclusions. It is assumed that the plate deforms under hypotheses of classical elasticity. The problems are formulated as the minimization of the plate energy functional on the convex and closed subset of the Sobolev space. It is established that, as the geometric parameter (the size) of the volume inclusion tends to zero, the solutions converge to the solution of an equilibrium problem of a plate with a thin rigid inclusion. Also the case of the delamination of an inclusion is investigated when a crack in the plate is located along one of the inclusion edges. In the problem of a plate with a delaminated inclusion the nonlinear condition of nonpenetration is given. This condition takes the form of a Signorini-type inequality and describes the mutual nonpenetration of the crack edges. For the problem with a delaminated inclusion, the equivalence of variational and differential statements is proved provided a sufficiently smooth solution. For each considered variation problem, unique solvability is established.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.