Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'passing probability':
Найдено статей: 2
  1. На основе известных свойств функции вероятности протекания простой кубической решётки размера L=2 в приближении линейной связи порога протекания бесконечной решётки xc и среднего значения xcL конечной решётки введена нескейлинговая функция вероятности протекания для решётки размера L>2. Показано, что на пороге протекания нескейлинговые вероятности для всех ПК решёток одинаковы.
    Компьютерные эксперименты на основе метода Монте-Карло согласуются с предлагаемой в работе теорией.

    Using known properties of the probability function for passing in a simple cubic lattice with L=2 in approximation of a linear relation between a passing threshold of an infinite lattice xc and average value xcL of a finite lattice, we introduce a nonscaling probability function of passing of a lattice with L>2. We show that on the passing threshold nonscaling probabilities for all simple cubic lattices are the same.
    Computer experiments based on the Monte-Carlo method are in agreement with the theory proposed.

  2. По введенной функции вероятности протекания в модели решетки Бете определен порог протекания простой кубической решетки в задаче узлов: xc(s.c.)=0,3116865.

    Using the probability function of passing in Bethe lattice model we have found the passing threshold of a simple cubic lattice in the site problem: xc(s.c.)=0,3116865.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref