Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'periodic potential':
Найдено статей: 8
  1. Работа посвящена вопросу об абсолютной непрерывности спектра двумерного обобщенного периодического оператора Шрёдингера $H_g+V=-\nabla g\nabla+V$, где непрерывная положительная функция $g$ и скалярный потенциал $V$ имеют общую решетку периодов $Λ$. Решения уравнения $(H_g+V)\varphi=0$ определяют, в частности, электрическое и магнитное поля для электромагнитных волн, распространяющихся в двумерных фотонных кристаллах. При этом функция $g$ и скалярный потенциал $V$ выражаются через диэлектрическую проницаемость $\varepsilon$ и магнитную проницаемость $\mu$ ($V$ также зависит от частоты электромагнитной волны). Диэлектрическая проницаемость $\varepsilon$ может быть разрывной функцией (и обычно выбирается кусочно-постоянной), поэтому возникает задача об ослаблении известных условий гладкости для функции $g$, обеспечивающих абсолютную непрерывность спектра оператора $H_g+V$. В настоящей работе предполагается, что коэффициенты Фурье функций $g^{\pm\frac12}$ при некотором $q\in[1, \frac43)$ удовлетворяют условию $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$ и скалярный потенциал $V$ имеет нулевую грань относительно оператора $-Δ$ в смысле квадратичных форм. Пусть $K$ - элементарная ячейка решетки $Λ$, $K^*$ - элементарная ячейка обратной решетки $\Lambda^*$. Оператор $H_g+V$ унитарно эквивалентен прямому интегралу операторов $H_g(k)+V$, где $k$ - квазиимпульс из $2\pi K^*$, действующих в $L^2(K)$. Последние операторы можно также рассматривать при комплексных векторах $k+ik'\in \mathbb{C}^2$. В статье используется метод Томаса. Доказательство абсолютной непрерывности спектра оператора $H_g+V$ сводится к доказательству обратимости операторов $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, при определенным образом выбираемых комплексных векторах $k+ik'\in \mathbb{C}^2$ (зависящих от $g$, $V$ и числа $\lambda$) с достаточно большой мнимой частью $k'$.

    The paper is concerned with the problem of absolute continuity of the spectrum of the two-dimensional generalized periodic Schrodinger operator $H_g+V=-\nabla g\nabla+V$ where the continuous positive function $g$ and the scalar potential $V$ have a common period lattice $\Lambda$. The solutions of the equation $(H_g+V)\varphi=0$ determine, in particular, the electric field and the magnetic field of electromagnetic waves propagating in two-dimensional photonic crystals. The function $g$ and the scalar potential $V$ are expressed in terms of the electric permittivity $\varepsilon$ and the magnetic permeability $\mu$ ($V$ also depends on the frequency of the electromagnetic wave). The electric permittivity $\varepsilon$ may be a discontinuous function (and usually it is chosen to be piecewise constant) so the problem to relax the known smoothness conditions on the function $g$ that provide absolute continuity of the spectrum of the operator $H_g+V$ arises. In the present paper we assume that the Fourier coefficients of the functions $g^{\pm\frac12}$ for some $q\in[1, \frac43)$ satisfy the condition $\sum\left(|N|^\frac12\left|\left(g^{\pm\frac12}\right)_N\right|\right)^q<+\infty$, and the scalar potential $V$ has relative bound zero with respect to the operator $-\Delta$ in the sense of quadratic forms. Let $K$ be the fundamental domain of the lattice $\Lambda$, and assume that $K^*$ is the fundamental domain of the reciprocal lattice $\Lambda^*$. The operator $H_g+V$ is unitarily equivalent to the direct integral of operators $H_g(k)+V$, with quasimomenta $k\in 2\pi K^*$, acting on the space $L^2(K)$. The last operators can be also considered for complex vectors $k+ik'\in \mathbb{C}^2$. We use the Thomas method. The proof of absolute continuity of the spectrum of the operator $H_g+V$ amounts to showing that the operators $H_g(k+ik')+V-\lambda$, $\lambda\in \mathbb{R}$, are invertible for some appropriately chosen complex vectors $k+ik'\in \mathbb{C}^2$ (depending on $g$, $V$, and the number $\lambda$) with sufficiently large imaginary parts $k'$.

  2. Рассматривается периодический оператор Шредингера ĤA+V в Rn, n≥3. На векторный потенциал A накладываются ограничения, которые, в частности, выполнены, если потенциал A принадлежит классу Соболева Hqloc(Rn;Rn), 2q>n-1, а также в случае, когда Σ ||AN||Cn<+∞, где AN – коэффициенты Фурье потенциала A. Доказана абсолютная непрерывность спектра периодического оператора Шредингера ĤA+V для скалярных потенциалов V из пространства Морри L2,p(Rn), p∈((n-1)/2,n/2], для которых ||ΧBr(x)V||2,pε0 при всех достаточно малых r>0 и всех xRn, где число ε0=ε0(n,p;A)>0 зависит от векторного потенциала A, Br(x) – замкнутый шар радиуса r>0 с центром в точке xRn, ΧΚ – характеристическая функция множества KRn, ||.||2,p
    норма в пространстве L2,p(Rn). Пусть K – элементарная ячейка решетки периодов потенциалов A и V, K* – элементарная ячейка обратной решетки. Оператор ĤA+V  унитарно эквивалентен прямому интегралу операторов ĤA(k)+V, k∈2πK*, действующих в L2(K). Последние операторы рассматриваются также при комплексных векторах k+ik’∈Cn. При доказательстве абсолютной непрерывности спектра оператора ĤA+V используется метод Томаса и оценки резольвенты операторов ĤA(k+ik’)+V при определенным образом выбираемых комплексных векторах k+ik’∈Cn с достаточно большой мнимой частью k’.

    We consider the periodic Schrödinger operator ĤA+V in Rn, n≥3. The vector potential A is supposed to satisfy some conditions which are fullled whenever the potential A belongs to the Sobolev class Hqloc(Rn;Rn), 2q>n-1, and also in the case where Σ ||AN||Cn<+∞. Here AN are the Fourier coecients of the potentialA. We prove absolute continuity of the spectrum of the periodic Schrödinger operator ĤA+V provided that the scalar potential V belongs to the Morrey space L2,p(Rn), p∈((n-1)/2,n/2] and ||ΧBr(x)V||2,pε0 for all suciently small r>0 and all xRn, where the number ε0=ε0(n,p;A)>0 depends on the vector potential A, Br(x) is a closed ball of radius r>0 centered at the point xRn, ΧΚ a characteristic function of a set KRn, ||.||2,p the norm in the space L2,p(Rn). Let K be the fundamental domain of the period lattice (which is common for the potentials A and V), K the fundamental domain of the reciprocal lattice. The operator ĤA+V is unitarily equivalent to the direct integral of operators ĤA(k)+V, k∈2πK*, acting on the space L2(K). The last operators are also considered for complex vectors k+ik’∈Cn. To prove absolute continuity of the spectrum of the operator ĤA+V, we use the Thomas method. The main ingredients in the proof are the inequalities for the resolvent of the operators ĤA(k+ik’)+V which hold for some appropriate chosen complex vectors k+ik’∈Cn with suciently large imaginary part k’.

  3. Доказана абсолютная непрерывность спектра многомерного периодического оператора Дирака для некоторых классов разрывных магнитных потенциалов.

    The absolute continuity of the spectrum of multidimensional periodic Dirac operator is proved for certain classes of discontinuous magnetic potentials.

  4. В данной работе рассматривается уравнение Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником. Показано, что уравнение Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником может быть проинтегрировано методом обратной спектральной задачи. Определена эволюция спектральных данных оператора Штурма–Лиувилля с периодическим потенциалом, связанного с решением уравнения Кортевега–де Фриза отрицательного порядка с самосогласованным интегральным источником. Полученные результаты позволяют применить метод обратной задачи для решения уравнения Кортевега–де Фриза отрицательного порядка с самосогласованным источником в классе периодических функций.

    In this paper, we consider the negative order Korteweg–de Vries equation with a self-consistent integral source. It is shown that the negative-order Korteweg–de Vries equation with a self-consistent integral source can be integrated by the method of the inverse spectral problem. The evolution of the spectral data of the Sturm–Liouville operator with a periodic potential associated with the solution of the negative order Korteweg–de Vries equation with a self-consistent integral source is determined. The obtained results make it possible to apply the inverse problem method to solve the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions.

  5. В последние два десятилетия углеродные нанотрубки активно исследуются в физической литературе, что обусловлено многообещающими перспективами их применения в микроэлектронике; в то же время интересные математические свойства используемых при этом гамильтонианов, к сожалению, часто остаются без должного внимания математиков. В настоящей статье проведено математически строгое исследование спектральных свойств гамильтониана $H_{\varepsilon}=H_0+\varepsilon V$ где гамильтониан электрона в углеродной нанотрубке типа «зигзаг» $H_0$ записан в приближении сильной связи, а оператор $\varepsilon V$ (потенциал) имеет вид

    $$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$

    здесь $\varepsilon >0$, $V_1,V_2$ - вещественные числа, $\delta_{n0}$ - символ Кронекера. Гамильтониан $H_{\varepsilon}$ отвечает углеродной нанотрубке с примесью, равномерно распределенной в сечении нанотрубки. Данный гамильтониан является разностным оператором, определенным на функциях из $(l^2(\Omega ))^2$, где $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, удовлетворяющих периодическим граничным условиям. В статье, в частности, доказано, что для каждой подзоны спектра вблизи одной из граничных точек подзоны в случае малых потенциалов существует ровно один квазиуровень, то есть собственное значение или резонанс. Для квазиуровней получены асимптотические формулы вида

    $$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
    +O(\varepsilon^3),$$

    где $l$ - номер подзоны, $N$ - число атомов в сечении нанотрубки, $\pm$ - знак $\lambda$. Также найдено условие того, когда квазиуровень является собственным значением.

     

    Morozova L.E., Chuburin Y.P.
    Quasi-levels of the Hamiltonian for a carbon nanotube, pp. 76-83

    In the past two decades, carbon nanotubes have been actively investigated in the physics literature, because of the promising prospects for their use in microelectronics; at the same time, interesting mathematical properties of used Hamiltonians, unfortunately, are often overlooked by mathematicians. In this paper, we carry out the mathematically rigorous investigation of spectral properties of the Hamiltonian $H_{\varepsilon}=H_0+\varepsilon V$, where the Hamiltonian $H_0$ of an electron in a zigzag carbon nanotube is written in the tight-binding approach, and the operator $\varepsilon V$ (potential) has the form

    $$(\varepsilon V\psi )(n)=\varepsilon { V_1\psi _1(n)\choose V_2\psi _2(n)}\delta_{n0}$$

    (here $\varepsilon >0$, $V_1,V_2$ are real numbers, $\delta_{n0}$ is the Kronecker delta). The Hamiltonian $H_{\varepsilon}$ corresponds to the carbon nanotube with an impurity uniformly distributed over the cross section of the nanotube. This Hamiltonian is the difference operator defined on functions from $(l^2(\Omega ))^2$, where $\Omega =\mathbb Z\times \{ 0,1,\ldots,N-1\}$, $N\geqslant 2$, satisfying the periodic boundary conditions. In particular, in this paper we prove that for each subband of the spectrum near one of the boundary points of the subband exactly one quasilevel (i.e. eigenvalue or resonance) exists in the case of small potentials. For quasilevels, the asymptotic formulas of the form

    $$\lambda _l^{\pm}= \pm \Bigl|2\cos\frac{\pi l}{N}+1\Bigr|\cdot\Bigl(1+\frac{\varepsilon^2(V_1+V_2)^2}{16\cos\frac{\pi l}{N}}\Bigr)
    +O(\varepsilon^3),$$

    are obtained, where $l$ is the subband number, $N$ is the number of atoms in the cross section of the nanotube, and $\pm$ is the sign of the $\lambda$. Also, we find the condition when a quasilevel is an eigenvalue.

     

  6. Рассмотрена задача о приливном влиянии на сферическую центральную планету от возмущающего тела (спутника), движущегося по эллиптической орбите. Произведено усреднение приливного потенциала по периоду движения спутника и доказано, что независимо от величины эксцентриситета орбиты сила от возмущающего тела оказывается в среднем чисто радиальная, как если бы орбита спутника была просто круговая.

    The problem of the tidal effects on the central spherical planet from the disturbing body (satellite), moving in an elliptical orbit is studied. We performed the averaging of the tidal potential over the period of the satellite and proved that regardless of the value of the orbit eccentricity the perturbation force of the body was, upon the average, purely radial, as if the orbit of the satellite had been just circular.

  7. Лебедев В.Г., Сысоева А.А., Княжева И.С., Данилов Д.А., Галенко П.К.
    Компьютерное моделирование высокоскоростного затвердевания разбавленного расплава Si-As, с. 123-140

    В работе рассмотрен локально-неравновесный процесс затвердевания переохлажденного бинарного расплава. В целях простоты предполагается, что затвердевающая бинарная система находится при постоянных температуре и давлении и имеет две фазы, соответствующие твердому и жидкому состояниям. Математическое описание процесса затвердевания основано на модели фазового поля, обобщающей подход Плаппа (M. Plapp, Phys. Rev. E 84, 031601 (2011)) на случай локально-неравновесных процессов. Для вывода термодинамически согласованных уравнений модели использован метод расширенной необратимой термодинамики в отличие от феноменологического подхода Плаппа. Другое различие с моделью Плаппа состоит в использовании в качестве динамической переменной концентрации, а не химпотенциала примеси. В рамках полученной модели показана эквивалентность описания процесса затвердевания через концентрационное поле и через химпотенциал системы. В силу малости времен релаксации представленная модель сводится к сингулярно-возмущенной системе уравнений в частных производных параболического типа, описывающих динамику фазового и концентрационного полей. В работе предполагается известным описание термодинамических равновесных состояний на основе экспериментально полученных потенциалов Гиббса.

    Для проверки полученной модели проведено численное моделирование одномерной задачи затвердевания в приближении разбавленного расплава Si-As, ранее неоднократно исследовавшегося экспериментально. Чтобы численно решить систему сингулярно-возмущенных уравнений, в работе предложен градиентно-устойчивый явный метод интегрирования уравнений второго порядка точности по времени. Для сведения бесконечного пространственного интервала к конечному использован метод «периодического сдвига». Оценка устойчивости получена из численных экспериментов.

    Из численного моделирования процесса затвердевания разбавленного расплава Si-As получены профили концентрации и фазового поля, а также коэффициент распределения примеси на фронте затвердевания в зависимости от величины переохлаждения. Для проверки адекватности результатов численных экспериментов использовано аналитическое выражение для коэффициента распределения как функции переохлаждения, полученное из точного решения локально-неравновесной модели с резкой границей. Исследовано влияние параметров модели на процесс затвердевания и поведение численных решений вблизи диффузной границы.

    Lebedev V.G., Sysoeva A.A., Knyazheva I.S., Danilov D.A., Galenko P.K.
    Computer simulation of the rapid solidification for diluted melt Si-As, pp. 123-140

    We consider a locally nonequilibrium process of solidification for a supercooled binary melt. For sake of simplicity, it is assumed, that the solidifying binary system is at constant temperature and pressure. Also there are two phases corresponding to the solid and the liquid states. The mathematical description of the solidification process is based on the phase-field model that generalizes the approach of Plapp (M. Plapp, Phys. Rev. E 84, 031601 (2011)) to the case of locally nonequilibrium processes. We use the method of extended irreversible thermodynamics to derive thermodynamically consistent equations of the model, in contrast to the phenomenological approach of Plapp. A concentration as a dynamic variable (and not the chemical potential of the impurity) is another difference from Plapp's model. The equivalence of describing the process of solidification through the concentration field and through the chemical potential of the system is shown in the framework of the resulting model. In view of the smallness of the relaxation times, the present model is reduced to the singular-perturbed system of partial differential parabolic equations describing the dynamics of concentration and phase fields. In the paper, it is assumed that the description of the thermodynamic equilibrium states on the basis of the experimentally obtained Gibbs potentials is given.

    To verify the model, the numerical simulation of the one-dimensional problem of solidification of the melt was performed in the approximation of the diluted melt Si-As, which had been repeatedly investigated experimentally. In this paper, we propose a gradient-stable explicit method of integrating equations of the second order of accuracy in time in order to solve the system of singularly-perturbed equations numerically. We reduced an infinite space interval to a finite interval by the method of «periodic translation». The estimation of stability was performed using numerical experiments.

    The concentration profile, the phase-field profile and the distribution coefficient of the impurity at the front of solidification depending upon the value of supercooling were obtained from the numerical simulation of the solidification process for diluted melt Si-As. An analytical expression for the distribution coefficient as a function of supercooling that follows from the locally nonequilibrium model with a sharp interface was used to test the adequacy of the results of numerical experiments. The effect of the model parameters on the solidification process and behavior of the numerical solutions near the diffuse boundary were investigated.

  8. Работа посвящена изучению устойчивости стационарных локализованных мод (солитонов щелевого типа) в одномерном нелинейном уравнении Шрёдингера (НУШ) с периодическим потенциалом и отталкивающей нелинейностью. Рассмотрены два класса решений: связанное состояние пары простейших щелевых солитонов из первой запрещенной зоны линейного спектра, находящихся в одной фазе или в противофазе и разделенных некоторым количеством пустых потенциальных ям. Для таких решений с помощью метода коллокации Фурье (Fourier collocation method) и метода функции Эванса (Evans function method) посчитаны линейные спектры задачи об устойчивости. Обнаружено, что если число разделяющих потенциальных ям между щелевыми солитонами нечетно (четно), то решения в одной фазе (в противофазе) экспоненциально неустойчивы. В этом случае, действительные части неустойчивых собственных значений в соответствующих спектрах экспоненциально убывают с ростом числа разделяющих периодов между щелевыми солитонами. С другой стороны, если число разделяющих потенциальных ям четно (нечетно), то решения в одной фазе (в противофазе) линейно устойчивы вдали от верхней границы первой запрещенной зоны, либо демонстрируют слабую осцилляторную неустойчивость вблизи границы запрещенной зоны. Для проверки результатов линейного анализа, был проведен численный счет НУШ с помощью конечно-разностной схемы. В результате эволюции, все рассмотренные в работе экспоненциально неустойчивые щелевые солитоны деформировались в пульсирующие объекты, тогда как устойчивые решения сохранили свой профиль в течение всего времени эксперимента.

    The work is devoted to numerical investigation of stability of stationary localized modes (“gap solitons”) for the one-dimentional nonlinear Schrödinger equation (NLSE) with periodic potential and repulsive nonlinearity. Two classes of the modes are considered: a bound state of a pair of in-phase and out-of-phase fundamental gap solitons (FGSs) from the first bandgap separated by various numbers of empty potential wells. Using the standard framework of linear stability analysis, we computed the linear spectra for the gap solitons by means of the Fourier collocation method and the Evans function method. We found that the gap solitons of the first and second classes are exponentially unstable for odd and even numbers of separating periods of the potential, respectively. The real parts of unstable eigenvalues in corresponding spectra decay exponentially with the distance between FGSs. On the contrary, we observed that the modes of the first and second classes are either linearly stable or exhibit weak oscillatory instabilities if the number of empty potential wells separating FGSs is even and odd, respectively. In both cases, the oscillatory instabilities arise in some vicinity of upper bandgap edge. In order to check the linear stability results, we fulfilled numerical simulations for the time-dependent NLSE by means of a finite-difference scheme. As a result, all the considered exponentially unstable solutions have been deformed to long-lived pulsating formations whereas stable solutions conserved their shapes for a long time.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref