Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'convexity':
Найдено статей: 48
  1. Бадриев И.Б., Исмагилов И.Н., Исмагилов Л.Н.
    Метод решения нелинейных стационарных анизотропных задач фильтрации, с. 3-11

    Работа посвящена методу решения стационарных задач фильтрации несжимаемой жидкости, следующей нелинейному анизотропному многозначному закону фильтрации с предельным градиентом. Задача фильтрации сформулирована в виде вариационного неравенства второго рода с обратно сильно монотонным оператором в гильбертовом пространстве. Функционал, входящий в это вариационное неравенство, является суммой нескольких полунепрерывных снизу выпуклых собственных функционалов. Для решения вариационного неравенства предлагается использовать итерационный метод расщепления.

    Badriev I.B., Ismagilov I.N., Ismagilov L.N.
    On the method of solving of nonlinear stationary anisotropic filtration problems, pp. 3-11

    The paper is devoted to a method of solving of stationary filtration problems of non-compressible fluid which follows the nonlinear multi-valued anisotropic law of filtration with limiting gradient. This problem mathematically is formulated in the form of variational inequality of the second kind in Hilbert space with inversely strongly monotone operator. The functional occurring in this variational inequality is a sum of several lower semi-continuous convex proper functionals. For solving the considered variational inequality the splitting method is offered.

  2. Рассматривается линейная нестационарная дифференциальная игра преследования группы убегающих группой преследователей. Цель преследователей - поймать всех убегающих, цель убегающих - хотя бы одному уклониться от встречи. Все игроки обладают равными динамическими возможностями, геометрические ограничения на управление - строго выпуклый компакт с гладкой границей.

    Рассматривается вопрос о минимальном количестве убегающих, достаточном для уклонения от заданного числа преследователей из любых начальных позиций. Для оценки сверху этого количества используются достаточные условия разрешимости глобальной задачи уклонения. В предположении, что для поимки одного убегающего достаточно принадлежности начальной позиции убегающего внутренности выпуклой оболочки начальных позиций преследователей, строится оценка снизу.

    Полученная двухсторонняя оценка числа убегающих, достаточного для уклонения от встречи из любой начальной позиции от заданного числа преследователей, иллюстрируется примерами.

    A linear non-stationary differential pursuit game with a group of pursuers and a group of evaders is considered. The pursuers' goal is to catch all evaders and the evaders' goal is at least for one of them to avoid contact with pursuers.

    All players have equal dynamic capabilities, geometric constraints on the control are strictly convex compact set with smooth boundary. The point in question is the minimum number of evaders that is sufficient to evade a given number of pursuers from any initial position. Sufficient conditions for the solvability of the global problem of evasion are used as an upper estimate of this minimum. We assume that to capture one evader it suffices that the initial position of this evader lie in the interior of convex hull of initial positions of pursuers. Using this assumption we find a lower estimate of this minimum.

    The obtained two-sided estimate of the number of evaders sufficient to avoid contact with a given number of pursuers from any initial position is illustrated by examples.

  3. Работа посвящена исследованию равновесия по Нэшу в неантагонистической детерминированной дифференциальной игре двух лиц в классе рандомизированных стратегий. Предполагается, что игроки информированы об управлении своего партнера, реализовавшегося к текущему времени. Поэтому игра формализуется в классе рандомизированных квазистратегий. В работе получена характеризация множества выигрышей (пар ожидаемых выигрышей игроков) в ситуациях равновесия по Нэшу с использованием вспомогательных антагонистических игр. Показано, что множество выигрышей в ситуациях рандомизированного равновесия по Нэшу является выпуклой оболочкой множества выигрышей в классе детерминированных стратегий. Приведен пример, показывающий дополнительные возможности, которые возникают при переходе к рандомизированным стратегиям.

    The paper is concerned with the randomized Nash equilibrium for a nonzero-sum deterministic differential game of two players. We assume that each player is informed about the control of the partner realized up to the current moment. Therefore, the game is formalized in the class of randomized non-anticipative strategies. The main result of the paper is the characterization of a set of Nash values considered as pairs of expected players' outcomes. The characterization involves the value functions of the auxiliary zero-sum games. As a corollary we get that the set of Nash values in the case when the players use randomized strategies is a convex hull of the set of Nash values in the class of deterministic strategies. Additionally, we present an example showing that the randomized strategies can enhance the outcome of the players.

  4. Рассматривается линейная задача уклонения одного убегающего от группы преследователей, при условии, что игроки обладают равными динамическими возможностями, убегающий не покидает пределы выпуклого конуса. Доказывается, что если число преследователей меньше размерности пространства, то убегающий уклоняется от встречи на интервале [0, ∞).

    Shuravina I.N.
    About one problem of evasion in a cone, pp. 13-16

    We consider a linear problem of evasion of one evador from the group of persecutors provided that players posess equal dynamic possibilities and evador does not leave a convex cone. It is proved, that if the number of persecutors is less then dimension of scape then the evador evades from a meeting on a positive semiaxis.

  5. Построена метрика в пространстве clos(Rn) всех непустых замкнутых (необязательно ограниченных) подмножеств Rn. Сходимость последовательности множеств в этой метрике оказывается равносильной сходимости в метрике Хаусдорфа последовательности пересечений этих множеств с центрированными в нуле шарами любого положительного радиуса, дополненных соответствующими сферами. В этой метрике доказана полнота пространства clos(Rn) и замкнутость подпространства всех непустых замкнутых выпуклых подмножеств Rn. Получены условия равносильности сходимости по предложенной метрике и сходимости по метрикам Хаусдорфа и Хаусдорфа–Бебутова. Полученные результаты могут применяться в задачах управления, теории дифференциальных включений.

    Zhukovskiy E.S., Panasenko E.A.
    On one metric in the space of nonempty closed subsets of Rn, pp. 15-25

    In the work, there is presented a new metric in the space clos(Rn) of all nonempty closed (not necessarily bounded) subsets of Rn. The convergence of sets in this metric is equivalent to convergence in the Hausdorff metric of the intersections of the given sets with the balls of any positive radius centered at zero united then with the corresponding spheres. It is proved that, with respect to the metric considered, the space clos(Rn) is complete, and its subspace of nonempty closed convex subsets of Rn is closed. There are also derived the conditions that guarantee the equivalence of convergence in this metric to convergence in the Hausdorff metric, and to convergence in the Hausdorff–Bebutov metric. The results obtained can be applied to studying control problems and differential inclusions.

  6. Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.

    We consider a linear problem of pursuing two evaders by a group of persecutors in case of equal dynamic opportunities of all participants and under phase restrictions imposed on the states of evaders. We assume that the evaders use the same control. The movement of each participant has the form $ \dot z + a (t) z = w. $ Geometric constraints on the control are strictly convex compact set with smooth boundary, and terminal sets are the origin of coordinates. It is assumed that the evaders do not leave the convex cone. The aim of a group of pursuers is to capture two evaders; the aim of a group of evaders is opposite. We say that a capture holds in the problem of pursuing two evaders if among the specified number of pursuers there are two of them who catch the evaders, possibly at different times. We obtain sufficient conditions for capturing two evaders in terms of initial positions. The results obtained are illustrated by examples.

  7. В работе вводится и исследуется подкласс $A_{n} (m,\beta,p,q,\lambda)$ однолистных функций с отрицательными коэффициентами, определяемый новым линейным оператором $J^\lambda$ в открытом единичном круге $\mathcal{U}=\{z \in \mathbb{C} : |z| < 1\}$. Основной задачей является изучение следующих свойств и характеристик: оценки коэффициентов, теоремы искажения, теоремы о замыкании, окрестность функции, радиусы звездообразности, выпуклости и почти выпуклости функций, принадлежащих классу $A_{n} (m,\beta,p,q,\lambda)$.

    The present paper introduces and studies the subclass $A_{n} (m,\beta,p,q,\lambda)$ of univalent functions with negative coefficients defined by new linear operator $J^\lambda$ in the open unit disk $\mathcal{U}=\{z \in \mathbb{C} : |z| < 1\}$. The main task is to investigate several properties such as coefficient estimates, distortion theorems, closure theorems. Neighborhood and radii of starlikeness, convexity and close-to-convexity of functions belonging to the class $A_{n} (m,\beta,p,q,\lambda)$ are studied.

  8. Рассматривается выпуклая задача оптимального управления для параболического уравнения со строго равномерно выпуклым целевым функционалом, с граничным управлением и с распределенными поточечными фазовыми ограничениями типа равенства и неравенства. Образы задающих поточечные фазовые ограничения операторов вкладываются в лебегово пространство суммируемых с $s$-й степенью функций при $s\in(1,2)$. В свою очередь, граничное управление принадлежит лебегову пространству с показателем суммируемости $r\in (2,+\infty)$. Основными результатами работы в рассматриваемой задаче оптимального управления с поточечными фазовыми ограничениями являются регуляризованные, или, другими словами, устойчивые к ошибкам исходных данных, секвенциальные принцип Лагранжа в недифференциальной форме и поточечный принцип максимума Понтрягина.

    A convex optimal control problem is considered for a parabolic equation with a strictly uniformly convex cost functional, with boundary control and distributed pointwise state constraints of equality and inequality type. The images of the operators that define pointwise state constraints are embedded into the Lebesgue space of integrable with $s$-th degree functions for $s\in(1,2)$. In turn, the boundary control belongs to Lebesgue space with summability index $r\in (2,+\infty)$. The main results of this work in the considered optimal control problem with pointwise state constraints are the two stable, with respect to perturbation of input data, sequential or, in other words, regularized principles: Lagrange principle in nondifferential form and Pontryagin maximum principle.

  9. Рассматривается задача уклонения убегающего от группы преследователей в конечномерном евклидовом пространстве. Движение описывается линейной системой дробного порядка вида $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ где ${}^C D^{\alpha}_{0+}f$ - производная по Капуто порядка $\alpha\in(0,1)$ функции $f$, $A$ - простая матрица. В начальный момент времени заданы начальные условия. Управления игроков ограничены одним и тем же выпуклым компактом. Убегающий дополнительно стеснен фазовыми ограничениями - выпуклым многогранным множеством c непустой внутренностью. В терминах начальных позиций и параметров игры получены достаточные условия разрешимости задачи уклонения.

    The paper deals with the problem of avoiding a group of pursuers in the finite-dimensional Euclidean space. The motion is described by the linear system of fractional order $$\left({}^C D^{\alpha}_{0+}z_i\right)=A z_i+u_i-v,$$ where ${}^C D^{\alpha}_{0+}f$ is the Caputo derivative of order $\alpha\in(0,1)$ of the function $f$ and $A$ is a simple matrix. The initial positions are given at the initial time. The set of admissible controls of all players is a convex compact. It is further assumed that the evader does not leave the convex polyhedron with nonempty interior. In terms of the initial positions and the parameters of the game, sufficient conditions for the solvability of the evasion problem are obtained.

  10. Для вещественнозначных функций $f$, заданных на подмножествах вещественных линейных пространств, введены понятия крайних подаргументов и крайних надаргументов, а также понятия естественных выпуклой $\check{f}$ и вогнутой $\hat{f}$ оболочек. Показано, что для любой строго выпуклой функции $g$ любая точка глобального максимума функции $f+g$ является крайним подаргументом для функции $f$. Аналогичный результат получен для функций вида $f/v + g$. На основе этих результатов предложен метод, облегчающий поиск глобальных экстремумов функций в некоторых случаях. Доказано, что при определенных условиях функции $f/v+g$ и $\hat{f}/v+g$ имеют одинаковые глобальные максимумы и одинаковые точки глобального максимума. Приведены необходимые и достаточные условия естественности выпуклой оболочки функции. Указано достаточное условие того, что при сужении области определения $f$, значения вогнутой оболочки $\hat{f}$ на суженной области не меняются. Найдены крайние под- и надаргументы для непрерывной нигде не дифференцируемой функции Кобаяши-Грея-Такаги $K(x)$ на отрезке $[0;1]$. Кроме того, на отрезке $[0;1]$ вычислены глобальные экстремумы функции $K(x)/\cos{x}$ и глобальный максимум функции $K(x)-\sqrt{x(1-x)}$. Работа снабжена примерами и проиллюстрирована графиками.

    For real-valued functions $f$, defined on subsets of real linear spaces, the notions of extreme subarguments, extreme epiarguments, natural convex $\check{f}$ and natural concave $\hat{f}$ envelopes are introduced. It is shown that for any strictly convex function $g$, any point of the global maximum of the function $f+g$ is an extreme subargument for the function $f$. A similar result is obtained for functions of the form $f/v + g$. Based on these results, a method is proposed, that facilitates the search for global extrema of functions in some cases. It is proved that under certain conditions the functions $f/v+g$ and $\hat{f}/v+g$ have the same global maximum and the same points of the global maximum. Necessary and sufficient conditions for the naturalness of the convex envelope of function are given. A sufficient condition for the invariance of values of the concave envelope $\hat{f}$ during narrowing the domain of $f$ is established. Extreme sub- and epiarguments for continuous nowhere differentiable Gray-Takagi function $K(x)$ of Kobayashi on the segment $[0;1]$ are found. Moreover, the global extrema of the function $K(x)/\cos{x}$ and the global maximum of the function $K(x)-\sqrt{x(1-x)}$ on $[0;1]$ are calculated. The article is provided with examples and graphic illustrations.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref