Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматриваются Cr-гладкие (r≥1) диффеоморфизмы многомерного пространства в себя с гиперболической неподвижной точкой и нетрансверсальной гомоклинической к ней точкой. Из работ Ш. Ньюхауса, Л.П. Шильникова, Б.Ф. Иванова и других авторов следует, что при определенном способе касания устойчивого и неустойчивого многообразий окрестность гомоклинической точки может содержать счетное множество устойчивых периодических точек, но по крайней мере один из характеристических показателей у таких точек стремится к нулю с ростом периода. В предлагаемой работе показано, что при определенных условиях, наложенных на характер касания устойчивого и неустойчивого многообразий, в окрестности нетрансверсальной гомоклинической точки лежит бесконечное множество устойчивых периодических точек, характеристические показатели которых отделены от нуля.
We regard Cr-smooth (r≥1) self-diffeomorphism of multidimensional space with a hyperbolic fixed point and non-transversal homoclinic point. In the works by Sh. Newhouse, L.P. Shil'nikov, B.F. Ivanov and other authors it is shown that under certain condition on the type of contact of stable and unstable manifolds, the neighborhoods of the homoclinic point may contain a countable set of stable periodic points, but at least one of their characterictic exponents tends to zero with the increase of a period. The goal of this work is to prove that under certain conditions imposed on the character of tangency between the stable and unstable manifolds, the neighborhood of the homoclinic point may contain an infinite set of stable periodic points whose characteristic exponents are negative and bounded away from zero.
-
Корреляции и неустойчивости колебаний фазовой плотности в моделях рассеянных звездных скоплений, с. 65-73Проводится исследование динамической эволюции шести моделей рассеянных звездных скоплений по данным о фазовых координатах звезд, полученных при численном интегрировании уравнений движения звезд. Для этой цели используются фазовые координаты звезд для 100 равноотстоящих моментов времени от начального t=0 до tm≅5.1τvr (τvr - начальное время бурной релаксации скопления). На этом интервале времени ошибки, связанные с округлением и экспоненциальным нарастанием возмущений в исходных координатах звезд, существенно не сказываются на статистических выводах о характере движения звезд скопления. Метод исследования основан на вычислениях взаимных корреляционных функций C1,2=C1,2(τ,r) (τ - временная задержка, r - расстояние между точками) для флуктуаций фазовой плотности и применении Фурье-преобразования функций C1,2 для расчета спектра частот и дисперсионных соотношений. Анализ графиков функций C1,2, спектров частот и дисперсионных кривых подтверждает существование в моделях волн фазовой плотности, позволяет установить полный спектр радиальных колебаний фазовой плотности, отделить устойчивые колебания от неустойчивых, рассчитать периоды колебаний фазовой плотности и инкременты нарастания неустойчивых колебаний фазовой плотности. Подтверждены теоретические оценки периодов известных неустойчивых гомологических колебаний ядер моделей скоплений. Указываются некоторые астрофизические приложения полученных результатов: возникновение иррегулярных структур в рассеянных скоплениях, слабая турбулентность в движениях звезд скоплений.
звездная динамика, фазовая плотность, корреляции, неустойчивые колебания, рассеянные звездные скопления
Correlations and instabilities of phase density fluctuations in models of open star clusters , pp. 65-73The investigation of dynamical evolution of 6 open cluster models is carried out on data about phase coordinates of stars received by numerical integration of stellar motion equations. To attain the aim the phase coordinates of stars for 100 equidistant moments of time from the initial t=0 to tm≅5.1τvr (τvr is the initial time of cluster violent relaxation), are used. Over the interval of time the rounding-off errors and errors because of exponential growth of initial coordinates perturbations do not affect statistical conclusions about motion behavior of cluster stars. The investigation method is based on calculations of mutual correlation functions C1,2=C1,2(τ,r) (τ is the time delay, r is the distance between the points) for phase density fluctuations and application of Fourier transformations of functions C1,2 in order to calculate frequency spectra and dispersion relations. The analysis of graphics C1,2, frequency spectra and dispersion curves confirms the existence of phase density waves in cluster models, allows to get a complete spectrum of phase density radial oscillations, to separate stable and unstable oscillations, to calculate the periods of phase density oscillations and increments of unstable phase density oscillations. The theoretical estimations of periods of known unstable homological core oscillations of cluster models are confirmed. Pointed out are some astrophysical applications of results received: the origin of irregular structures in open clusters, weak turbulence of cluster star motions.
-
В данной работе исследуется качение сферического волчка с осесимметричным распределением масс по гладкой горизонтальной плоскости, совершающей периодические вертикальные колебания. Для рассматриваемой системы получены уравнения движения и законы сохранения. Показано, что система допускает два положения равновесия, соответствующих равномерным вращениям волчка относительно вертикально расположенной оси симметрии. Положение равновесия устойчиво, когда центр масс расположен ниже геометрического центра и неустойчиво, если центр масс расположен выше него. Проведена редукция уравнений движения к системе с полутора степенями свободы. Рассматриваемая редуцированная система представлена в виде малого возмущения задачи о движении волчка Лагранжа. При помощи метода Мельникова показано, что устойчивая и неустойчивая ветви сепаратрисы трансверсально пересекаются между собой, что говорит о неинтегрируемости рассматриваемой задачи. Приведены результаты компьютерного моделирования динамики волчка вблизи неустойчивого положения равновесия.
сферический волчок, вибрирующая плоскость, случай Ланранжа, расщепление сепаратрис, интеграл Мельникова, неинтегрируемость, хаос, отображение через периодThis paper investigates the rolling motion of a spherical top with an axisymmetric mass distribution on a smooth horizontal plane performing periodic vertical oscillations. For the system under consideration, equations of motion and conservation laws are obtained. It is shown that the system admits two equilibrium points corresponding to uniform rotations of the top about the vertical symmetry axis. The equilibrium point is stable when the center of mass is located below the geometric center, and is unstable when the center of mass is located above it. The equations of motion are reduced to a system with one and a half degrees of freedom. The reduced system is represented as a small perturbation of the problem of the Lagrange top motion. Using Melnikov’s method, it is shown that the stable and unstable branches of the separatrix intersect transversally with each other. This suggests that the problem is nonintegrable. Results of computer simulation of the top dynamics near the unstable equilibrium point are presented.
-
О кратных резонансах четвертого порядка в неавтономной гамильтоновой системе с двумя степенями свободы, с. 272-281Рассматриваются движения неавтономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Предполагается, что в системе реализуется кратный (двойной или тройной) резонанс четвертого порядка. Дан перечень всех возможных наборов характеристических показателей, соответствующих указанным резонансным случаям. Получены пять качественно различных приближенных (модельных) гамильтонианов, отвечающих данным наборам. Для всех рассматриваемых случаев кратных резонансов получены достаточные условия формальной устойчивости тривиального равновесия полной системы, записанные в виде ограничений на коэффициенты форм четвертой степени в нормализованных гамильтонианах возмущенного движения, дана графическая интерпретация этих условий. Показано, что полученные области формальной устойчивости содержатся внутри областей устойчивости каждого имеющегося сильного резонанса, рассматриваемого по отдельности, а резонансные коэффициенты, отвечающие слабым резонансам, должны принимать значения из ограниченного диапазона. Рассмотрены некоторые вопросы о неустойчивости тривиального равновесия системы в случаях кратных резонансов четвертого порядка. Найденные условия формальной устойчивости проверены в точках кратных резонансов четвертого порядка в задаче об устойчивости цилиндрической прецессии динамически симметричного спутника-пластинки в центральном ньютоновском гравитационном поле на эллиптической орбите произвольного эксцентриситета.
гамильтонова система, кратный резонанс четвертого порядка, формальная устойчивость, спутник, цилиндрическая прецессия
On multiple fourth-order resonances in a nonautonomous two-degree-of-freedom Hamiltonian system, pp. 272-281We consider the motion of a nonautonomous time-periodic two-degree-of-freedom Hamiltonian system in the vicinity of a trivial equilibrium being stable in the linear approximation. Fourth-order multiple (double or triple) resonance is assumed to be realized in the system. A list of all possible characteristic exponent sets corresponding to these resonant cases is given. Five qualitatively different approximate (model) Hamiltonian functions corresponding to these sets are obtained. For all cases of multiple resonances under study, sufficient conditions for the formal stability of the trivial equilibrium of the complete system are obtained, written as constraints on the coefficients of forms of the fourth degree in the normalized Hamiltonian functions of perturbed motion. A graphical interpretation of these conditions is given. The regions of formal stability are shown to be contained within the stability regions of each existing strong resonance considered separately, and the resonance coefficients corresponding to the weak resonances should take values from a limited range. Some questions of instability of the trivial equilibrium of the system in cases of multiple fourth-order resonances are considered. The found conditions of formal stability are examined at the points of multiple fourth-order resonances in the stability problem of cylindrical precession of a dynamically symmetric satellite-plate in the central Newtonian gravitational field on an elliptical orbit of arbitrary eccentricity.
-
В работе исследуются движения системы, состоящей из двух шарнирно соединенных тонких однородных стержней, вращающихся вокруг горизонтальных осей. Предполагается, что точка подвеса системы, совпадающая с концом одного из стержней, совершает горизонтальные высокочастотные гармонические колебания малой амплитуды.
Проведено исследование устойчивости четырех положений относительного равновесия на вертикали. Показано, что устойчивым может быть только нижнее ("висящее") положение относительного равновесия. Для системы, состоящей из двух одинаковых стержней, вопрос об устойчивости этого равновесия решен в нелинейной постановке. Также для этой же системы изучен вопрос о существовании, бифуркациях и устойчивости высокочастотных периодических движений малой амплитуды, отличных от положений относительного равновесия на вертикали.
We consider the motion of a system consisting of two hinged thin uniform rods rotating about horizontal axes. It is assumed that the point of suspension of the system coinciding with the point of suspension of one of the rods makes horizontal high-frequency harmonic oscillations of a small amplitude.
Investigation of stability of four relative equilibria in the vertical is carried out. It is proved that only the lower ("hanging") relative equilibrium can be stable if the oscillation frequency of the point of suspension doesn’t exceed the fixed value. For a system consisting of two identical rods the nonlinear problem of stability of this equilibrium is solved. The problem of existence, bifurcations and stability of high-frequency periodic motions of a small amplitude which differ from the relative equilibria in the vertical is also studied for the system.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.