Текущий выпуск Выпуск 2, 2025 Том 35
Результыты поиска по 'stationary motions':
Найдено статей: 9
  1. Целью работы является получение математической модели движения составной упругой системы. Поиск собственных форм и частот предлагается проводить путем разложения колебаний по формам неподвижных элементов. Это позволяет преобразовать уравнения движения в частных производных в обыкновенные дифференциальные уравнения. Проведено моделирование движения космического аппарата, в состав которого входят упругие элементы большой протяженности (панели солнечных батарей).

    Borisov M.V., Avramenko А.А.
    Modelling of motion of the spacecraft with elastic elements, pp. 17-28

    The purpose of the article is receiption of mathematical model of motion of the complex elastic system. The normal modes and frequencies are searched by decomposition of vibrations on the modes of stationary elements of the system. It allows one to transform partial differential equations of motion in ordinary differential equations. The motion of a space craft which consists of elastic large size elements (solar panels) is modeled.

  2. Рассматриваются ударные движения плоских твердых дисков над неподвижной горизонтальной плоскостью в однородном поле тяжести. Плоскость является абсолютно гладкой, соударения с плоскостью - абсолютно упругими. Диски движутся в вертикальной плоскости и вращаются вокруг горизонтальной оси, при этом они могут отрываться от плоскости с последующими ударами и прыжками. Приведены двумерные отображения таких движений дисков на фазовой плоскости при различных энергиях. Также определены стационарные точки и проведен полный анализ их линейной устойчивости. Показано, что в плоскости параметров имеется множество зон устойчивости и неустойчивости в первом приближении. Получены явные аналитические условия устойчивости и неустойчивости через параметры задачи.

    We consider the motion of a flat rigig disks bouncing off a horizontal plane in the gravity field. The plane is assumed to be absolutely smooth and the impact absolutely elastic. The disks move in vertical plane and rotate around horizontal axis, while the disks are able to break off from the plane with following impacts and bounces. For different values of the energy, 2D projections of the disk’s trajectories onto the phase plane are given. The stationary points are determined and their linear stability is studied in detail. It is shown, there are alternating domains of linear stability and instability in the first approximation in the plane parameters. The stability conditions are expressed analytically in terms of the parameters of the problem.

  3. В работе применяется топологический подход для поиска и анализа устойчивости относительных равновесий для системы трех вихрей равной интенсивности в круговой области. Показано, что система трех вихрей допускает редукцию на одну степень свободы. Найдены две новые стационарные конфигурации - равнобедренная и коллинеарная несимметричная, построены бифуркационные диаграммы, проведен анализ устойчивости для этих случаев.

    In this paper, topological approach are used for searching and stability analysis of relative equilibriums for the system of three point vortices of equal in magnitude intensities. It is shown that the system of three point vortices can be reduced by one degree of freedom. We find the two new stationary configurations (isosceles and non-symmetrical collinear), study their bifurcations. The stability analysis is performed for these cases.

  4. Потапов И.И., Потапов Д.И., Королёва К.С.
    О движении речного потока в сечении изогнутого русла, с. 577-593

    На закруглениях речного русла формируются вторичные поперечные течения. В зависимости от геометрии русла вторичных течений в створе может быть несколько, и они могут иметь различный масштаб. Даже малое вторичное поперечное течение влияет на параметры гидродинамического потока и это влияние необходимо учитывать при моделировании русловых процессов и исследовании береговых деформаций русла. Трехмерное моделирование таких разномасштабных процессов требует больших вычислительных затрат и на текущий момент возможно только для небольших модельных каналов. Поэтому для исследования береговых процессов в данной работе предложена модель пониженной размерности. Выполненная редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости–вихрь–функция тока. В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данного поля скорости должно быть определено из решения вспомогательных задач или получено из данных натурных или экспериментальных измерений. Для численного решения сформулированной задачи используется метод конечных элементов в формулировке Петрова–Галеркина. В работе получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений с известными экспериментальными данными. Погрешности численных результатов авторы связывают с необходимостью более точного определения радиальной компоненты поля скорости в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и более точного определения граничных условий на свободной границе створа.

    Potapov I.I., Potapov D.I., Koroleva K.S.
    On the river flow motion in the bend channel cross-section, pp. 577-593

    At the river bed curves, secondary flow normal to the main flow direction are formed. Depending on the channel geometry, there may be several secondary flows in the cross-section, and they may have different scales. Even a small secondary cross-section flow affects the parameters of the hydrodynamic flow and this influence must be taken into account when modeling riverbed processes and researching coast deformations of the channel. Three-dimensional modeling of such multi-scale processes requires large computational costs and is currently possible only for small model channels. Therefore, a reduced-dimensional model is proposed in this paper to study coastal processes. The performed reduction of the problem from a three-dimensional model of river flow motion to a two-dimensional one in the plane of the channel cross-section assumes that the hydrodynamic flow is quasi-stationary and the hypotheses on the asymptotic behavior of the flow along the flow coordinate are fulfilled for it. Taking into account these limitations, a mathematical model of the problem of a stationary turbulent calm river flow in a channel cross-section is formulated in this work. The problem is formulated in a mixed velocity–vortex–stream function formulation. Specifying of the boundary conditions on the flow free surface for the velocity field determined in the normal and tangential directions to the cross-section axis is required as additional conditions for the problem reduction. It is assumed that the values of this velocity field should be determined from the solution of auxiliary problems or obtained from data of natural or experimental measurements.

    The finite element method in the Petrov–Galerkin formulation is used for the numerical solution of the formulated problem. A discrete analog of the problem is obtained and an algorithm for its solution is proposed. The performed numerical studies showed generally good agreement between the obtained solutions and the known experimental data. The authors associate the errors in the numerical results with the need for a more accurate determination of the radial component of the velocity field in the cross-section by selecting and calibrating a more suitable model for turbulent viscosity calculating and a more accurate determination of the boundary conditions on the cross-section free boundary.

  5. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия, устойчивого в линейном приближении. Пусть значения параметров задачи таковы, что в системе реализуется одновременно двойной комбинационный резонанс третьего порядка и резонанс четвертого порядка. Решается вопрос о существовании и устойчивости резонансных периодических решений системы. Исследование проводится на примере задачи о движении динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите. В качестве невозмущенных рассматриваются периодические движения спутника, рождающиеся из его стационарных вращений на круговой орбите (гиперболоидальной и конической прецессий), для резонансных значений параметров. Проведена нормализация гамильтонианов возмущенного движения, определены положения равновесия приближенных (модельных) систем, методом Пуанкаре построены соответствующие резонансные периодические движения спутника в окрестности указанных невозмущенных движений, дана их геометрическая интерпретация. Выявлены неустойчивые периодические движения, а также движения, являющиеся устойчивыми для большинства (в смысле меры Лебега) начальных условий и формально устойчивыми.

    The motion of a near-autonomous time-periodic two-degree-of-freedom Hamiltonian system in the vicinity of a linearly stable trivial equilibrium is considered. The values of the problem parameters are supposed to be such that the system implements both a double combinational third-order resonance and a fourth-order resonance. The problem of existence and stability of resonant periodic motions of the system is considered. The study is carried out using as an example the problem of the motion of a dynamically symmetric satellite (a rigid body) relative to the center of mass in the central Newtonian gravitational field in an elliptical orbit with small eccentricity. The satellite's periodic motions generated from its stationary rotations in a circular orbit (hyperboloidal and conical precessions) for the resonant values of the parameters are considered as unperturbed ones. The normalization of the Hamiltonian functions of perturbed motion is performed, and the equilibrium positions of approximate (model) systems are determined. The corresponding resonant periodic motions of the satellite in the vicinity of these unperturbed motions are obtained by the Poincare method, and their geometric interpretation is given. The unstable periodic motions and the motions that are stable for the majority (in the sense of Lebesgue measure) of the initial conditions and formally stable are revealed.

  6. Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.

    The paper studies the motions of a dynamically symmetric satellite (rigid body) relative to the center of mass in the central Newtonian gravitational field on a weakly elliptical orbit in the neighborhood of its stationary rotation (cylindrical precession). We consider the values of the parameters for which, in the limiting case of a circular orbit, one of the frequencies of small linear oscillations is equal to unity and the other is equal to zero, and the rank of the coefficient matrix of the linearized equations of the perturbed motion is equal to two, as well as a small neighborhood of this resonant point in the three-dimensional space of parameters. The resonant periodic motions of the satellite, analytical in fractional powers of a small parameter (the eccentricity of the orbit of the satellite's center of mass), are constructed. A rigorous nonlinear analysis of their stability is carried out. The methods of KAM theory are used to describe two- and three-frequency conditionally periodic motions of a satellite, with frequencies of different orders in a small parameter. A number of general theoretical issues concerning the considered multiple parametric resonance in Hamiltonian systems with two degrees of freedom that are close to autonomous and periodic in time are discussed. Several qualitatively different variants of parametric resonance regions are constructed. It is shown that in the general case the nature of nonlinear resonant oscillations of the system is determined by the first approximation system in a small parameter.

  7. Рассматривается движение математического маятника, установленного на подвижной платформе. Платформа вращается вокруг заданной вертикали с постоянной угловой скоростью $\omega$ и одновременно совершает гармонические колебания с амплитудой $A$ и частотой $\Omega$ вдоль вертикали. Амплитуда колебаний предполагается малой по сравнению с длиной маятника $\ell$ $(A=\varepsilon \ell,\ 0<\varepsilon \ll 1) $. Рассмотрено три типа движений. Для первых двух типов маятник неподвижен относительно платформы и располагается вдоль ее оси вращения (висящий и перевернутый маятники). Для третьего типа движений маятник совершает периодические колебания с периодом, равным периоду вертикальных колебаний платформы. Эти колебания имеют амплитуду порядка $\varepsilon$ и при $\varepsilon = 0$ переходят в положение относительного равновесия, в котором маятник составляет постоянный угол с вертикалью. Третий тип движения существует, если угловая скорость вращения платформы достаточно большая ($\omega^2 \ell>g$, где $g$ - ускорение свободного падения). В статье решается задача об устойчивости этих трех типов движения маятника для малых значений $\varepsilon$. Рассмотрены как нерезонансные случаи, так и случаи, когда в системе реализуются резонансы второго, третьего и четвертого порядка. В пространстве трех безразмерных параметров задачи $g/(\omega^2 \ell)$, $\Omega / \omega$ и $\varepsilon$ выделены области устойчивости по Ляпунову и области неустойчивости. Исследование опирается на классические методы и алгоритмы Ляпунова, Пуанкаре и Биркгофа, а также на современные методы анализа динамических систем при помощи КАМ-теории.

    Markeev A.P., Sukhoruchkin D.A.
    On the dynamics of a pendulum mounted on a movable platform, pp. 240-251

    The motion of a mathematical pendulum mounted on a movable platform is considered. The platform rotates around a given vertical with a constant angular velocity $\omega$ and simultaneously executes harmonic oscillations with amplitude $A$ and frequency $\Omega$ along the vertical. The amplitude of oscillations is assumed to be small in comparison with the length $\ell$ of the pendulum $(A=\varepsilon \ell,\ 0<\varepsilon \ll 1) $. Three types of motions are considered. For the first two types, the pendulum is stationary relative to the platform and is located along its axis of rotation (hanging and inverted pendulum). For the third type of motions, the pendulum performs periodic oscillations with a period equal to the period of vertical oscillations of the platform. These oscillations have an amplitude of order $\varepsilon$ and at $\varepsilon = 0$ become relative equilibrium positions, in which the pendulum is a constant angle from the vertical. The motion of the third type exists if the angular velocity of rotation of the platform is large enough ($\omega^2 \ell>g$, $g$ is acceleration of gravity). In this paper, the problem of stability of these three types of pendulum motions for small values of $\varepsilon$ is solved. Both nonresonant cases and cases where resonances of the second, third and fourth orders occur in the system are considered. In the space of three dimensionless parameters of the problem, Lyapunov's stability and instability regions are singled out. The study is based on classical methods and algorithms due to Lyapunov, Poincaré and Birkhoff, as well as on modern methods of dynamical system analysis using Kolmogorov-Arnold-Moser (KAM) theory.

  8. Рассматривается движение близкой к автономной, периодической по времени гамильтоновой системы с двумя степенями свободы в окрестности тривиального равновесия. Предполагается, что система зависит от трех параметров, один из которых мал, и при его нулевом значении система автономна. Пусть в автономном случае для некоторого набора двух других параметров обе частоты малых линейных колебаний системы в окрестности равновесия равны нулю и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен трем, двум или единице. Исследуется структура областей устойчивости и неустойчивости тривиального равновесия системы в окрестности резонансной точки трехмерного пространства параметров, изучается вопрос о существовании, числе и устойчивости (в линейном приближении) периодических движений системы, аналитических по целым или дробным степеням малого параметра. В качестве приложения построены периодические движения динамически симметричного спутника (твердого тела) относительно центра масс в окрестности его стационарного вращения (цилиндрической прецессии) на слабоэллиптической орбите в рассматриваемом случае двух нулевых частот, доказана их неустойчивость.

    We consider the motion of a near-autonomous, time-periodic two-degree-of- freedom Hamiltonian system in the vicinity of trivial equilibrium. It is assumed that the system depends on three parameters, one of which is small, and when it is zero, the system is autonomous. Suppose that in the autonomous case for a set of two other parameters, both frequencies of small linear oscillations of the system in the vicinity of the equilibrium are equal to zero, and the rank of the coefficient matrix of the linearized equations of perturbed motion is three, two, or one. We study the structure of the regions of stability and instability of the trivial equilibrium of the system in the vicinity of the resonant point of a three-dimensional parameter space, as well as the existence, number and stability (in a linear approximation) of periodic motions of the system that are analytic in integer or fractional powers of the small parameter. As an application, periodic motions of a dynamically symmetric satellite (solid) with respect to the center of mass are obtained in the vicinity of its stationary rotation (cylindrical precession) in a weakly elliptical orbit in the case of two zero frequencies under study, and their instability is proved.

  9. Рассматривается шар Чаплыгина на плоскости, на который действует сила трения, удовлетворяющая условию: (F,u)<0 при u≠0 и F=0 при u=0, где u - скорость проскальзывания шара. Контакт с опорной плоскостью предполагается точечным (иными словами, отсутствуют пятно контакта и момент трения верчения). Основной задачей работы является нахождение множества возможных стационарных (финальных) движений и определение типов их устойчивости.

    В работе показано, что стационарных движений возможно ровно три; все они представляют собой равномерные и прямолинейные качения шара по прямой без проскальзывания, при которых он вращается вокруг одной из главных осей тензора инерции. При этом вращение вокруг оси наибольшего момента инерции устойчиво, вокруг среднего и наименьшего  неустойчиво.

    The Chaplygin ball on a plane is considered under the action of the friction force which satisfies the following condition: (F,u)<0 as u u≠0 and F=0 as u=0, where u is the gliding velocity. The ball is supposed to have a point contact with the supporting plane (this means that the contact spot is absent and also there is no rotation friction torque). The main task of the paper is to determine a set of possible stationary (or final) motions and their stability.

    In the current paper it is shown that exactly three stationary motions are possible; these motions represent straightline uniform rolling motions of the ball without sliding, at that the ball is rotating around one of the primary axes of the inertia tensor. Rotation around the axis of the greatest moment of inertia is stable, around the middle one and the lowest one it is unstable.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref