Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'strategy':
Найдено статей: 44
  1. Рассматривается дифференциальная игра группы преследователей и одного убегающего при равных динамических возможностях всех участников. Получены необходимые и достаточные условия поимки в случае, когда убегающий стеснен фазовыми ограничениями.

    Bannikov A.S.
    On one problem of simple pursuit, pp. 3-11

    A differential game of the group of persecutors and one escapee is considered at equal dynamic opportunities of all participants. Necessary and sufficient conditions for capture are received in the case where the escapee is constrained by phase restrictions.

  2. Рассматривается дифференциальная игра группы преследователей и одного убегающего при равных динамических возможностях всех участников. Получены достаточные условия уклонения от встречи в классе позиционных контрстратегий.

    Differential game of group of persecutors and one evader is considered under equal dynamic possibilities of all players. Sufficient conditions of evasion in a counter-strategy class are received.

  3. Рассматривается задача простого преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Получены достаточные условия поимки.

    A differential game of the group of persecutors and two evaders is considered at equal dynamic opportunities of all participants and under equal phase restrictions imposed on the states of evaders. Sufficient solvability conditions are derived proceeding on the assumption that the evaders use the same control.

  4. Жуковский В.И., Кудрявцев К.Н., Горбатов А.С.
    Равновесие по Бержу в модели олигополии Курно, с. 147-156

    В работе построено равновесие по Бержу в модели олигополии Курно. Проведено сравнение равновесий по Бержу и по Нэшу. Выявлены условия, при которых выигрыши игроков в ситуации равновесия по Бержу больше, чем их выигрыши в ситуации равновесия по Нэшу.

    Zhukovskii V.I., Kudryavtsev K.N., Gorbatov A.S.
    The Berge equilibrium in Cournot's model of oligopoly, pp. 147-156

    In many large areas of the economy (such as metallurgy, oil production and refining, electronics), the main competition takes place among several companies that dominate the market. The first models of such markets - oligopolies were described more than a hundred years ago in articles by Cournot, Bertrand, Hotelling. Modeling of oligopolies continues in many modern works. Moreover, in 2014 Nobel Prize in Economics “for his analysis of market power and regulation in sectors with few large companies” was received by Jean Tirole - the author of one of the best modern textbooks on the theory of imperfect competition “The Theory of Industrial Organization”. The main idea of all these publications, studying the behavior of oligopolies, is that every company is primarily concerned with its profits. This approach meets the concept of Nash equilibrium and is actively used in modeling the behavior of players in a competitive market. The exact opposite of such “selfish” equilibrium is “altruistic” concept of Berge equilibrium. In this approach, each player, without having to worry about himself, choose his actions (strategies) trying to maximize the profits of all other market participants. This concept called Berge equilibrium appeared in Russia in 1994 in reference to the France Claude Berge monograph published in 1957. The first works on the concept of Berge equilibrium belong to K.S. Vaisman and V.I. Zhukovskii. Once outside Russia, the concept of “Berge equilibrium” is slowly gaining popularity. To day, the number of publications related to this balance is already measured in tens. However, all of these items are limited to purely theoretical issues, or, in general, to psychology applications. Works devoted to the study of Berge equilibrium in economic problems, were not seen until now. It's probably a consequence of Martin Shubik's review (“… no attention is paid to the application to the economy. … the book is of little interest for economists”) of the Berge's book, it “scared” economists for a long time. However, it is not so simple. In this article, Berge equilibrium is considered in Cournot oligopoly, its relation to Nash equilibrium is studied. Cases are revealed in which players gain more profit by following the concept of Berge equilibrium, than by using strategies dictated by Nash equilibrium.

  5. Высокос М.И., Жуковский В.И., Кириченко М.М., Самсонов С.П.
    Новый подход к многокритериальным задачам при неопределенности, с. 3-16

    Новизна в том, что лицо, принимающее решение (ЛПР) в многокритериальной задаче при неопределенности, стремится не только по возможности увеличить гарантированные значения каждого из своих критериев, но и одновременно уменьшить гарантированные риски, сопровождающие такое увеличение. Предлагаемое исследование выполнено на стыке теории многокритериальных задач (МЗ) и принципа минимаксного сожаления (риска) (ПМС) Сэвиджа-Ниханса: из теории МЗ использованы понятие слабо эффективной оценки и сопровождающая теорема Ю.Б. Гермейера, а из ПМС - оценка значения функции сожаления в качестве риска по Сэвиджу-Нихансу. Рассмотрение ограничено интервальными неопределенностями: о них ЛПР известны лишь границы изменения, а какие-либо вероятностные характеристики отсутствуют (по тем или иным причинам). Введено новое понятие - сильно гарантированного по исходам и рискам решения (СГИР), максимального по Слейтеру; установлено его существование при «привычных» для математического программирования ограничениях (непрерывность критериев, компактность множеств стратегий и неопределенностей). В качестве приложения найден явный вид СГИР в задаче диверсификации вклада по рублевому и валютному депозитам.

    Vysokos M.I., Zhukovskii V.I., Kirichenko M.M., Samsonov S.P.
    A new approach to multicriteria problems under uncertainty, pp. 3-16

    The applicability and novelty of this research lies in that the decision-maker in a multicriteria problem aims not only to maximize guaranteed values of each criterion, but also to minimize the guaranteed risks accompanying the said maximization. The topic of the research lies at the interface of the multicriteria problem theory and the Savage-Niehans minimax regret principle: the concept of a weakly effective estimate has been derived from the MP theory, while estimation of risks with values of the Savage-Niehans regret function has been derived from the minimax regret principle. The scope of this research is limited to interval uncertainties: the decision-maker only knows the limits of the interval, and probabilistic characteristics are missing. A new term is introduced, namely, “strongly guaranteed solution under outcomes and risks”; its existence for “regular”-confined-strategies for the mathematical programming is established. As an example of a practical application, the problem of diversification of a multi-currency deposit is suggested and solved.

  6. Работа посвящена исследованию равновесия по Нэшу в неантагонистической детерминированной дифференциальной игре двух лиц в классе рандомизированных стратегий. Предполагается, что игроки информированы об управлении своего партнера, реализовавшегося к текущему времени. Поэтому игра формализуется в классе рандомизированных квазистратегий. В работе получена характеризация множества выигрышей (пар ожидаемых выигрышей игроков) в ситуациях равновесия по Нэшу с использованием вспомогательных антагонистических игр. Показано, что множество выигрышей в ситуациях рандомизированного равновесия по Нэшу является выпуклой оболочкой множества выигрышей в классе детерминированных стратегий. Приведен пример, показывающий дополнительные возможности, которые возникают при переходе к рандомизированным стратегиям.

    The paper is concerned with the randomized Nash equilibrium for a nonzero-sum deterministic differential game of two players. We assume that each player is informed about the control of the partner realized up to the current moment. Therefore, the game is formalized in the class of randomized non-anticipative strategies. The main result of the paper is the characterization of a set of Nash values considered as pairs of expected players' outcomes. The characterization involves the value functions of the auxiliary zero-sum games. As a corollary we get that the set of Nash values in the case when the players use randomized strategies is a convex hull of the set of Nash values in the class of deterministic strategies. Additionally, we present an example showing that the randomized strategies can enhance the outcome of the players.

  7. Рассматривается линейная задача преследования группой преследователей двух убегающих при равных динамических возможностях всех участников и с фазовыми ограничениями на состояния убегающих в предположении, что убегающие используют одно и то же управление. Движение каждого участника имеет вид $\dot z+a(t)z=w.$ Геометрические ограничения на управления - строго выпуклый компакт с гладкой границей, терминальные множества - начало координат. Предполагается, что убегающие в процессе игры не покидают пределы выпуклого конуса. Целью преследователей является поимка двух убегающих, цель группы убегающих противоположна. Говорят, что в задаче преследования происходит поимка, если существуют два преследователя, из заданной группы преследователей, которые ловят убегающих, при этом моменты поимки могут не совпадать. В терминах начальных позиций получены достаточные условия поимки двух убегающих. Приведены примеры, иллюстрирующие полученные результаты.

    We consider a linear problem of pursuing two evaders by a group of persecutors in case of equal dynamic opportunities of all participants and under phase restrictions imposed on the states of evaders. We assume that the evaders use the same control. The movement of each participant has the form $ \dot z + a (t) z = w. $ Geometric constraints on the control are strictly convex compact set with smooth boundary, and terminal sets are the origin of coordinates. It is assumed that the evaders do not leave the convex cone. The aim of a group of pursuers is to capture two evaders; the aim of a group of evaders is opposite. We say that a capture holds in the problem of pursuing two evaders if among the specified number of pursuers there are two of them who catch the evaders, possibly at different times. We obtain sufficient conditions for capturing two evaders in terms of initial positions. The results obtained are illustrated by examples.

  8. В работе рассматривается игра патрулирования с двумя игроками — патрулирующим и атакующим. Цель первого игрока — охранять объект от злоумышленников, поймать атакующего. Цель второго — причинить урон охраняемому объекту и не стать пойманным. В данной статье охраняемым объектом выступают базовые станции сотовых компаний. Теоретико-игровая модель построена для решения задачи о нахождении начального распределения местоположения игроков по базовым станциям. При известной матрице перехода игроков по станциям в работе находятся оптимальные стратегии игроков и значение игры. Рассмотрена обратная задача — поиск оптимальных матриц перехода при известных начальных распределениях местоположения игроков. В такой постановке найдено равновесие по Нэшу, когда атакующий совершает две атаки.

    A patrolling game with two players, a patroller and an attacker, is considered in the paper. The aim of the former is to protect an object from intruders and catch the attacker. The aim of the latter is to cause damage to the protected object without being caught. Cellular base stations are viewed as protected objects. A game-theoretic model is constructed to find an initial distribution of players on base stations. When the transition matrix of players among the stations is known, an optimal strategy of players and the value of the game are calculated. An inverse problem of searching for optimal transition matrices with known initial distribution of players is studied. The Nash equilibrium with the attacker making two attacks is found for the considered problem.

  9. Рассматривается задача оптимального управления системой бесконечного числа однотипных агентов. Пространство допустимых для агентов состояний является конечным. В рассматриваемой постановке имеется общий для всех агентов оптимизируемый функционал и общий центр управления, выбирающий стратегию для агентов. Предполагается, что выбираемая стратегия является позиционной. В настоящей работе рассматривается случай, когда динамика состояний агентов задается некоторой марковской цепью с непрерывным временем. Предполагается, что матрица Колмогорова этой цепи в каждом состоянии зависит от текущего состояния, выбранного управления и распределения всех агентов. Для такой задачи в работе показано, что решение в классе позиционных стратегий может быть построено на основе решения детерминированной задачи оптимального управления в конечномерном фазовом пространстве.

    We consider an optimal control problem for an infinite amount of agents of the same type. We assume that agents have a finite state space. The given formulation of the problem involves an objective functional that is common for all agents and a common control center that chooses a strategy for agents. A chosen strategy is supposed to be positional. In this paper we consider a case when the dynamics of agents is given by a Markov chain with continuous time. It is assumed that the Kolmogorov matrix of this chain in each state depends on the current state, the chosen control and the distribution of all agents. For the original problem, it is shown that concerning positional strategies the solution can be obtained through the solution of the deterministic control problem in a finite-dimensional phase space.

  10. Для динамической системы, управляемой в условиях помех, рассматривается задача оптимизации гарантированного результата. Особенностью задачи является наличие функциональных ограничений на помехи, при которых свойство замкнутости множества допустимых помех относительно операции «склейки» двух его элементов, вообще говоря, отсутствует. Это обстоятельство препятствует непосредственному применению методов теории дифференциальных игр для исследования задачи и тем самым приводит к необходимости их походящей модификации. В работе предложено новое понятие неупреждающей стратегии управления (квазистратегии). Доказано, что соответствующий функционал оптимального гарантированного результата удовлетворяет принципу динамического программирования. Как следствие, установлены так называемые свойства $u$- и $v$-стабильности этого функционала, которые в дальнейшем позволят построить конструктивное решение задачи в позиционных стратегиях.

    For a dynamical system controlled under conditions of disturbances, a problem of optimizing the guaranteed result is considered. A feature of the problem is the presence of functional constraints on disturbances, under which, in general, the set of admissible disturbances is not closed with respect to the operation of “gluing up” of two of its elements. This circumstance does not allow to apply directly the methods developed within the differential games theory for studying the problem and, thus, leads to the necessity of modifying them appropriately. The paper provides a new notion of a non-anticipative control strategy. It is proved that the corresponding functional of the optimal guaranteed result satisfies the dynamic programming principle. As a consequence, so-called properties of $u$- and $v$-stability of this functional are established, which may allow, in the future, to obtain a constructive solution of the problem in the form of feedback (positional) controls.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref