Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
В данной работе методом вложения строится классификация двуметрических феноменологически симметричных геометрий двух множеств (ФС ГДМ) ранга $(3,2)$ по ранее известной аддитивной двуметрической ФС ГДМ ранга $(2,2)$, задаваемой парой функций $g^1=x+\xi$ и $g^2 = y+\eta$. Суть этого метода состоит в нахождении функций, задающих ФС ГДМ ранга $(3,2)$ по функциям $g^1=x+\xi$ и $g^2 = y+\eta$. При решении этой задачи используем тот факт, что двуметрические ФС ГДМ ранга $(3,2)$ допускают группы преобразований размерности 4, а двуметрические ФС ГДМ ранга $(2,2)$ - размерности 2. Из этого следует, что компоненты операторов алгебры Ли группы преобразований двуметрической ФС ГДМ ранга $(3,2)$ являются решениями системы восьми линейных дифференциальных уравнений первого порядка от двух переменных. Исследуя эту систему уравнений, приходим к возможным выражениям для систем операторов. Затем из систем операторов выделяем операторы, образующие алгебры Ли. Потом, применяя экспоненциальное отображение, по найденным алгебрам Ли восстанавливаем действия групп Ли. Эти действия как раз и задают двуметрические ФС ГДМ ранга $(3,2)$.
феноменологически симметричная геометрия двух множеств, система дифференциальных уравнений, алгебра Ли, группа Ли преобразованийIn this paper, the method of embedding is used to construct the classification of two-dimensional phenomenologically symmetric geometries of two sets (PS GTS) of rank $(3,2)$ from the previously known additive two-dimensional PS GTS of rank $(2,2)$ defined by a pair of functions $g^1=x+\xi$ and $g^2 = y+\eta$. The essence of this method consists in finding the functions defining the PS GTS of rank $(3,2)$ with respect to the functions $g^1=x+\xi$ and $g^2 = y+\eta$. In solving this problem, we use the fact that the two-dimensional PS GTS of rank $(3,2)$ admit groups of transformations of dimension 4, and the two-dimensional PS GTS of rank $(2,2)$ is of dimension 2. It follows that the components of the operators of the Lie algebra of the transformation group of the two-dimensional PS GTS of rank $(3,2)$ are solutions of a system of eight linear differential equations of the first order in two variables. Investigating this system of equations, we arrive at possible expressions for systems of operators. Then, from the systems of operators, we select the operators that form Lie algebras. Then, applying the exponential mapping, we recover the actions of the Lie groups from the Lie algebras found. It is precisely these actions that specify the two-dimensional PS GTS of rank $(3,2)$.
-
О многомерных точных решениях уравнения нелинейной диффузии типа пантографа с переменным запаздыванием, с. 359-374Рассматривается многомерное уравнение нелинейной диффузии типа пантографа с линейно растущим запаздыванием по времени и масштабированием по пространственным переменным в источнике (стоке). Предложено строить точные решения методом редукции с использованием двух анзацев с квадратичной зависимостью от пространственных переменных. Зависимость решения от пространственных переменных находится из системы алгебраических уравнений, а зависимость от времени находится из системы обыкновенных дифференциальных уравнений с линейно растущим запаздыванием аргумента. Приводится ряд примеров точных решений, как радиально симметричных, так и анизотропных по пространственным переменным.
уравнение нелинейной диффузии типа пантографа, растущее запаздывание по времени, масштабирование по пространственным переменным, редукция, точные решения
On multidimensional exact solutions of the nonlinear diffusion equation of the pantograph type with variable delay, pp. 359-374We consider a multidimensional pantograph-type nonlinear diffusion equation with a linearly increasing time delay and scaling with respect to spatial variables in the source (sink). It is proposed to construct exact solutions by the reduction method using two ansatzes with a quadratic dependence on spatial variables. The dependence of the solution on spatial variables is found from a system of algebraic equations, and the dependence on time is found from a system of ordinary differential equations with a linearly increasing delay of the argument. A number of examples of exact solutions are given, both radially symmetric and anisotropic with respect to spatial variables.
-
В этой работе решается проблема расширения группы параллельных переносов трехмерного пространства до локально ограниченно точно дважды транзитивной группы Ли преобразований того же пространства. Локальная ограниченная точная двойная транзитивность означает, что существует единственное преобразование, которое переводит произвольную пару несовпадающих точек из некоторой открытой окрестности почти в любую пару точек из той же окрестности. В данной статье поставленная задача решается для двух случаев, связанных с жордановыми формами матриц третьего порядка. С помощью этих матриц записываются системы линейных дифференциальных уравнений, решения которых приводят к базисным операторам шестимерного линейного пространства. Требуя замкнутость коммутаторов этих операторов, выделяем алгебры Ли. Проверяя также условие локальной ограниченной точно дважды транзитивности, мы получаем алгебры Ли локально ограниченно точно дважды транзитивных групп Ли преобразований трехмерного пространства с подгруппой параллельных переносов. В результате получены три алгебры Ли, две из которых представимы в виде полупрямой суммы коммутативного трехмерного идеала и трехмерной подалгебры Ли, а третья разлагается в полупрямую сумму коммутативного трехмерного идеала и подалгебры, изоморфной $sl(2,R)$.
группа Ли преобразований, локально ограниченно точно дважды транзитивная группа Ли преобразований, алгебра Ли, жорданова форма матрицыIn this paper, we solve the problem of extending the group of parallel translations of a three-dimensional space to a locally boundedly sharply doubly transitive Lie group of transformations of the same space. Local bounded sharply double transitivity means that there is a single transformation that takes an arbitrary pair of non-coincident points from some open neighborhood to almost any pair of points from the same neighborhood. In this article, the problem posed is solved for two cases related to Jordan forms of third-order matrices. These matrices are used to write systems of linear differential equations, whose solutions lead to the basic operators of a six-dimensional linear space. Requiring the closedness of the commutators of these operators, we select the Lie algebras. Checking also the condition of local bounded sharply double transitivity, we obtain the Lie algebras of locally boundedly sharply doubly transitive Lie groups of transformations of a three-dimensional space with a subgroup of parallel translations. As a result, three Lie algebras are obtained, two of which can be represented as a half-line sum of a commutative three-dimensional ideal and a three-dimensional Lie subalgebra, and the third one decomposes into a half-line sum of a commutative three-dimensional ideal and a subalgebra isomorphic to $sl(2,R)$.
-
Величину коэффициента фильтрации принято определять эмпирически в силу обусловленности его физическими и химическими свойствами среды и фильтрующейся жидкости. Однако, полученные экспериментальные данные могут существенно варьироваться в зависимости от приложенных нагрузок. В работе выдвигается новая гипотеза о линейной зависимости коэффициента фильтрации среды от первого инварианта тензора напряжений, возникших в области вследствие гидравлического напора на границе. В рамках этой гипотезы исследуется изменение коэффициента фильтрации области при плоской деформации. Возникновение на границе гидравлического напора ведет к возникновению в среде упругих возмущений. Так как скорость последних много больше скорости фильтрации жидкости, то изменение напряженного состояния области приведет к изменению порового пространства, а следовательно, и к изменению коэффициента фильтрации. Таким образом, исходная задача сводится к решению сначала классической задачи теории упругости, а именно к решению краевой задачи для функции Эри, а затем к определению непосредственно коэффициента фильтрации как решения краевой задачи для гармонического уравнения. В работе построен численный алгоритм решения гармонического и бигармонического уравнений, основанный на методе граничных элементов, который, в конечном счете, сводит исходную задачу к системе линейных алгебраических уравнений. Как показали численные результаты исследований, изменение коэффициента фильтрации некоторых материалов при рабочих нагрузках достигает в некоторых точках области 20 процентов. Особенно актуальны эти результаты при использовании труб, шлангов, водонапорных рукавов из различных полимерных материалов, стеклопластика, а также при эксплуатации гидротехнических и очистных сооружений. Изменение фильтрующей способности среды при малых упругих деформациях делает возможной при соответствующих давлениях фильтрацию даже в тех средах, которые обычно считаются для жидкости непроницаемыми. В работе приведены результаты численных экспериментов по исследованию коэффициента фильтрации полиуретана (гибкий поливочный шланг) и бутилкаучука. Построены графики искомых механических параметров. Расчеты выполнялись в программном пакете Maple.
коэффициент фильтрации, плоская деформация, напряжения, фильтрация, бигармоническое уравнение, гармоническое уравнение, численный алгоритм
Investigation of the filtration coefficient of elastic-porous medium at plane deformation, pp. 396-407The value of the filtration coefficient is determined empirically due to its physical and chemical properties of the medium and the filtered liquid. However, the experimental data obtained can vary significantly depending on the applied loads. The paper proposes a new hypothesis about the linear dependence of the medium filtration coefficient on the first invariant of the stress tensor arising in the region due to the hydraulic head at the boundary. Within the framework of this hypothesis, the change of the region filtration coefficient under plane deformation is investigated. The appearance of hydraulic head on the border leads to the appearance of elastic perturbations in the environment. Since the velocity of the latter is much higher than the velocity of the liquid filtration, the change in the stress state of the region will lead to a change in the pore space, and, consequently, to a change in the filtration coefficient. Thus, the initial problem is reduced to the solution of the classical problem of elasticity theory, namely, to the solution of the boundary value problem for the Erie function, and then to the definition of the filtration coefficient as the solution of the boundary value problem for the harmonic equation. A numerical algorithm for solving harmonic and biharmonic equations based on the boundary element method is constructed, which ultimately reduces the original problem to a system of linear algebraic equations. As shown by the numerical results of studies, the change in the filtration coefficient of some materials under operating loads reaches 20 percent at some points of the region. These results are especially relevant when using pipes, hoses, water hoses made of various polymeric materials, fiberglass, as well as in the operation of hydraulic engineering and treatment facilities. The change in the filtering capacity of the medium at low elastic deformations makes it possible at the appropriate pressures to filter even in those environments that are usually considered impervious to the liquid. The paper presents the results of numerical experiments to study the filtration coefficient of polyurethane (flexible irrigation hose) and butyl rubber. Graphs of the required mechanical parameters are constructed. Calculations were performed in the Maple software package.
-
В работе рассматривается задача программного управления движением динамически несимметричного уравновешенного шара на плоскости при помощи трех двигателей-маховиков при условии, что шар катится без проскальзывания. Центр масс механической системы совпадает с геометрическим центром шара. Найдены законы управления, обеспечивающие движение шара вдоль базовых траекторий (прямой и окружности), а также по произвольно заданной кусочно-гладкой траектории на плоскости. В данной работе предлагается кватернионная модель движения шара, которая позволяет обойтись без традиционного использования тригонометрических функций, а кинематические уравнения записать в виде линейных дифференциальных уравнений, исключающих недостатки связанные с применением углов Эйлера. Решение поставленной задачи осуществляется с применением кватернионной функции времени, которая определяется видом траектории и законом движения точки контакта шара с плоскостью. Приведен пример управления движением шара и выполнена визуализация движения системы шар-маховики в пакете компьютерной алгебры.
кватернионы, программное управление, неголономная связь, геометрическая динамика, плавное движение, сферо-роботThis paper deals with the problem of program control of the motion of a dynamically asymmetric balanced ball on the plane using three flywheel motors, provided that the ball rolls without slipping. The center of mass of the mechanical system coincides with the geometric center of the ball. Control laws are found to ensure the motion of the ball along the basic trajectories (line and circle), as well as along an arbitrarily given piecewise smooth trajectory on the plane. In this paper, we propose a quaternion model of ball motion. The model does not require using the traditional trigonometric functions. Kinematic equations are written in the form of linear differential equations eliminating the disadvantages associated with the use of Euler angles. The solution of the problem is carried out using the quaternion function of time, which is determined by the type of trajectory and the law of motion of the point of contact of the ball with the plane. An example of ball motion control is given and a visualization of the ball-flywheel system motion in a computer algebra package is presented.
-
Решение систем уравнений метода Галёркина с разрывными базисными функциями на графическом ускорителе, с. 121-131Рассматриваются особенности решения систем уравнений метода Галёркина с разрывными функциями на графических процессорах GPU прямым методом и методами подпространств Крылова с различными предобуславливателями. Производительность программной реализации решения систем на GPU сравнивается с аналогичной, полученной на многоядерном процессоре CPU.
метод Галёркина с разрывными базисными функциями, системы линейных алгебраических уравнений, методы подпространств Крылова, предобуславливатель, разрежённые матрицы, вычисления общего назначения на графических устройствах.Solving systems of equations obtained in Discontinuous Galerkin method by GPU-computing is considered. The direct method and iterative Krylov methods with preconditioning are used. The performance of GPU-computing for these systems of equations is compared with one of multicore CPU.
-
Рассматривается линейное однородное автономное дескрипторное уравнение с дискретным временем $$B_0g(k+1)+\sum_{i=1}^mB_ig(k+1-i)=0,\quad k=m,m+1,\ldots,$$ c прямоугольными (в общем случае) матрицами $B_i.$ Такое уравнение возникает при исследовании задач управления системами со многими соизмеримыми запаздываниями в управлении: задачи 0-управляемости, задачи синтеза регулятора типа обратной связи, обеспечивающего успокоение решения исходной системы, задачи модальной управляемости (управляемости коэффициентов характеристического квазиполинома), задачи спектральной приводимости и задачи синтеза наблюдателей для двойственной системы наблюдения. Для изучаемого дескрипторного уравнения с дискретным временем на основе решения конечной цепочки однородных алгебраических систем построено описание подпространства начальных условий, для которых это уравнение разрешимо. Получено представление всех его решений в виде, позволяющем организовать вычислительный процесс для нахождения одного из решений этого уравнения. Изучены свойства этого уравнения, используемые в задачах синтеза регуляторов для непрерывных систем со многими соизмеримыми запаздываниями в управлении. Отличительной чертой представленного исследования изучаемого объекта является использование подхода, не требующего построения преобразований, приводящих матрицы исходного уравнения к различным каноническим формам.
линейные системы со многими запаздываниями, линейное автономное дескрипторное уравнение с дискретным временем, подпространство начальных условий, представление решения
On a linear autonomous descriptor equation with discrete time. I. Application to the 0-controllability problem, pp. 290-311We consider a linear homogeneous autonomous descriptor equation with discrete time $$B_0g(k+1)+\sum_{i=1}^mB_ig(k+1-i)=0,\quad k=m,m+1,\ldots,$$ with rectangular (in general case) matrices $B_i$. Such an equation arises in the study of the most important control problems for systems with many commensurate delays in control: the 0-controllability problem, the synthesis problem of the feedback-type regulator, which provides calming to the solution of the original system, the modal controllability problem (controllability of the coefficients of characteristic quasipolynomial), the spectral reduction problem and the problem of observers' synthesis for a dual surveillance system. For the studied descriptor equation with discrete time, a subspace of initial conditions for which this equation is solvable is described based on the solution of a finite chain of homogeneous algebraic systems. The representation of all its solutions is obtained in the form of some explicit recurrent formula convenient for the organization of the computational process. Some properties of this equation that are used in the problems of regulator synthesis for continuous systems with many commensurate delays in control are studied. A distinctive feature of the presented study of the object under consideration is the use of an approach that does not require the construction of transformations reducing the matrices of the original equation to different canonical forms.
-
Рассмотрены закрученные ламинарные осесимметричные течения вязких несжимаемых жидкостей в потенциальном поле массовых сил. Исследования течений осуществляются в цилиндрической системе координат. В течениях отдельно рассматриваются области, в которых осевая производная окружной скорости не может принимать нулевое значение в какой-нибудь открытой окрестности (существенно закрученные течения), и области, в которых эта производная равна нулю (область со слоистой закруткой). Показано, что для областей со слоистой закруткой можно применять известный метод (метод вязких вихревых доменов), разработанный для незакрученных течений. Для существенно закрученных течений получена формула для вычисления радиально-осевой скорости воображаемой жидкости через окружную компоненту завихренности, окружную циркуляцию реальной жидкости и частные производные этих функций. Частицы этой воображаемой жидкости «переносят» вихревые трубки радиально-осевой составляющей завихренности с сохранением интенсивности этих трубок, а также «переносят» величину окружной циркуляции и произведение окружной составляющей завихренности на некоторую функцию расстояния до оси симметрии. Предложен неинтегральный способ восстановления поля скорости по полю завихренности. Он сводится к решению системы линейных алгебраических уравнений с двумя переменными. Полученный результат предлагается использовать для распространения метода вязких вихревых доменов на закрученные осесимметричные течения.
уравнения Навье-Стокса, течение с закруткой, метод дискретных вихрей, теоремы Гельмгольца о вихрях, метод вязких вихревых доменовSwirling laminar axisymmetric flows of viscous incompressible fluids in a potential field of body forces are considered. The study of flows is carried out in a cylindrical coordinate system. In the flows, the regions in which the axial derivative of the circumferential velocity cannot take on zero value in some open neighborhood (essentially swirling flows) and the regions in which this derivative is equal to zero (the region with layered swirl) are considered separately. It is shown that a well-known method (the method of viscous vortex domains) developed for non-swirling flows can be used for regions with layered swirling. For substantially swirling flows, a formula is obtained for calculating the radial-axial velocity of an imaginary fluid through the circumferential vorticity component, the circumferential circulation of a real fluid, and the partial derivatives of these functions. The particles of this imaginary fluid “transfer” vortex tubes of the radial-axial vorticity component while maintaining the intensity of these tubes, and also “transfer” the circumferential circulation and the product of the circular vorticity component by some function of the distance to the axis of symmetry. A non-integral method for reconstructing the velocity field from the vorticity field is proposed. It is reduced to solving a system of linear algebraic equations in two variables. The obtained result is proposed to be used to extend the method of viscous vortex domains to swirling axisymmetric flows.
-
Рассматривается начальная задача для линейной нестационарной управляемой системы дифференциально-разностных уравнений с тождественно вырожденной матрицей при производной искомой вектор-функции в главной части. Получены достаточные и необходимый и достаточный критерии полной управляемости такой системы на некотором отрезке из области определения. Основой для анализа послужило преобразование главной части к так называемой «эквивалентной форме», в которой разделены «дифференциальная» и «алгебраическая» составляющие.
We consider the initial problem for a control linear time varying system of difference-differential equations with an identically degenerate matrix coefficient of the derivative of the desired vector function in the main part. The sufficient conditions and the necessary and sufficient criterion of full controllability on some segment in the domain of definition are obtained for such a system. The analisys is based on the transformation of the main part to so-called «equivalent form» with separated «differential» and «algebraic» subsystems.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.