Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Данная работа посвящена постановке и исследованию однозначной разрешимости краевых задач (типа задачи Дарбу, задачи Трикоми) для нагруженного интегро-дифференциального уравнения третьего порядка с гиперболическим и параболо-гиперболическим оператором. Существование и единственность решения краевой задачи доказана методом интегральных уравнений. Задачи эквивалентным образом сводятся к интегральным уравнениям Вольтерра со сдвигом. При достаточных условиях на заданные функции и коэффициенты доказывается однозначная разрешимость полученных интегральных уравнений.
нагруженное уравнение, уравнения смешанного типа, интегро-дифференциальное уравнение, интегральное уравнение со сдвигом, функция БесселяIn this paper, the unique solvability of the boundary value problems (of a type similar to the Darboux problem and the Tricomi problem) of a loaded third order integro-differential equation with hyperbolic and parabolic-hyperbolic operators is proved by method of integral equations. The problem is similarly reduced to a Volterra integral equation with a shift. Under sufficient conditions for given functions and coefficients the unique solvability is proved for the solution of obtained integral equations.
-
Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.
краевая задача, априорная оценка, регулярная разрешимость, интегральное уравнение Фредгольма второго рода, резольвента, метод последовательных приближений
A boundary value problem for a fourth order partial differential equation with the lowest term, pp. 3-10In this paper we study a boundary value problem for the fourth order partial differential equation with the lowest term in a rectangular domain. For the solution of the problem a priori estimate is obtained. From a priori estimate the uniqueness of the solution of the problem follows. For the proof of the solvability of this problem we use the method of separation of variables. The solvability of this problem is reduced to the Fredholm integral equation of the second kind with respect to unknown function. Integral equation is solved by the method of successive approximations. We find the sufficient conditions for the absolute and uniform convergence of series representing the solution of the problem and the series obtained by differentiation four times with respect x and two times with respect to t.
-
Получены необходимые и достаточные условия разрешимости периодической краевой задачи для всех линейных функционально-дифференциальных уравнений второго порядка с заданной нормой функционального оператора.
линейные уравнения с последействием, периодическая краевая задача, периодические решения, функционально-дифференциальные уравненияNecessary and sufficient conditions for the unique solvability of the periodic boundary value problem for all linear second order functional differential equations with the given norm of the functional operators.
-
В прямоугольной области исследуются нелокальные краевые задачи для одномерного нестационарного уравнения конвекции-диффузии дробного порядка с переменными коэффициентами, описывающие диффузионный перенос той или иной субстанции, а также перенос, обусловленный движением среды. Методом энергетических неравенств выводятся априорные оценки решений нелокальных краевых задач в дифференциальной форме. Построены разностные схемы, и для них доказываются аналоги априорных оценок в разностной форме, приводятся оценки погрешности в предположении достаточной гладкости решений уравнений. Из полученных априорных оценок следуют единственность и устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью $O(h^2+\tau^2)$.
нелокальные краевые задачи, априорная оценка, нестационарное уравнение конвекции-диффузии, дифференциальное уравнение дробного порядка, дробная производная КапутоIn the rectangular region, we study nonlocal boundary value problems for the one-dimensional unsteady convection-diffusion equation of fractional order with variable coefficients, describing the diffusion transfer of a substance, as well as the transfer due to the motion of the medium. A priori estimates of solutions of nonlocal boundary value problems in differential form are derived by the method of energy inequalities. Difference schemes are constructed and analogs of a priori estimates in the difference form are proved for them, error estimates are given under the assumption of sufficient smoothness of solutions of equations. From the obtained a priori estimates, the uniqueness and stability of the solution from the initial data and the right part, as well as the convergence of the solution of the difference problem to the solution of the corresponding differential problem at the rate of $O(h^2+\tau^2)$.
-
Рассмотрено применение барицентрического метода для численного решения задач Дирихле и Неймана для уравнения Гельмгольца в ограниченной односвязной области $\Omega\subset\mathbb{R}^2$. Основное допущение в решении заключается в задании границы $\Omega$ в кусочно-линейном представлении. Отличительная особенность барицентрического метода состоит в порядке формирования глобальной системы векторных базисных функций для $\Omega$ через барицентрические координаты. Установлены существование и единственность решения задач Дирихле и Неймана для уравнения Гельмгольца барицентрическим методом и определена оценка скорости сходимости. Уточнены особенности алгоритмической реализации метода.
внутренние задачи Дирихле и Неймана, уравнение Гельмгольца, многоугольник произвольной формы, барицентрический метод, метод Галёркина, барицентрические координаты, оценка сходимостиThe application of the barycentric method for the numerical solution of Dirichlet and Neumann problems for the Helmholtz equation in the bounded simply connected domain $\Omega\subset\mathbb{R}^2$ is considered. The main assumption in the solution is to set the $\Omega$ boundary in a piecewise linear representation. A distinctive feature of the barycentric method is the order of formation of a global system of vector basis functions for $\Omega$ via barycentric coordinates. The existence and uniqueness of the solution of Dirichlet and Neumann problems for the Helmholtz equation by the barycentric method are established and the convergence rate estimate is determined. The features of the algorithmic implementation of the method are clarified.
-
Рассматривается задача с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в прямоугольной области. Исследуются вопросы существования и единственности классического решения рассматриваемой задачи, а также непрерывной зависимости решения от исходных данных. Предлагается новый подход к решению задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка на основе введения новых функций. Путем введения новых неизвестных функций задача сводится к эквивалентному семейству задач Коши для нагруженной системы дифференциальных уравнений с параметрами и интегральным соотношениям. Предложен алгоритм нахождения приближенного решения эквивалентной задачи и доказана его сходимость. Установлены условия однозначной разрешимости задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в терминах коэффициентов системы.
нагруженные системы гиперболических уравнений, задача с данными на характеристиках, семейства задач Коши, алгоритм, критерий разрешимостиWe consider a problem with data on the characteristics for a loaded system of hyperbolic equations of the second order on a rectangular domain. The questions of the existence and uniqueness of the classical solution of the considered problem, as well as the continuity dependence of the solution on the initial data, are investigated. We propose a new approach to solving the problem with data on the characteristics for the loaded system of hyperbolic equations second order based on the introduction new functions. By introducing new unknown functions the problem is reduced to an equivalent family of Cauchy problems for a loaded system of differential with a parameters and integral relations. An algorithm for finding an approximate solution to the equivalent problem is proposed and its convergence is proved. Conditions for the unique solvability of the problem with data on the characteristics for the loaded system of hyperbolic equations of the second order are established in the terms of coefficient's system.
-
О единственности решения задачи мультипликативного управления для модели дрейфа–диффузии электронов, с. 3-18Исследуется задача мультипликативного управления для стационарной диффузионно-дрейфовой модели зарядки полярного диэлектрика. Роль управления играет старший коэффициент в уравнении модели, имеющий смысл коэффициента диффузии электронов. Глобальная разрешимость краевой задачи и локальная единственность ее решения, а также разрешимость экстремальной задачи доказана в предыдущих работах авторов. В настоящей работе для задачи управления выводится система оптимальности и устанавливаются условия локальной регулярности множителя Лагранжа. На основе анализа данной системы доказывается локальная единственность решения задачи мультипликативного управления для конкретных функционалов качества.
модель дрейфа–диффузии электронов, модель зарядки полярного диэлектрика, задача мультипликативного управления, система оптимальности, локальная единственностьThe multiplicative control problem for a stationary diffusion-drift model of charging a polar dielectric is studied. The role of control is played by a leading coefficient in the model equation, which has the meaning of the electron diffusion coefficient. The global solvability of the boundary value problem and the local uniqueness of its solution, as well as the solvability of the extremum problem under consideration, have been proved in the previous papers of the authors. In this paper, an optimality system is derived for the control problem and local regularity conditions for the Lagrange multiplier are established. Based on the analysis of this system, the local uniqueness of the multiplicative control problem's solution for specific cost functionals is proved.
-
В статье исследуются прямая и обратная задачи для уравнений субдиффузии с участием дробной производной в смысле Хильфера. В качестве эллиптической части уравнения взят произвольный положительный самосопряженный оператор $A$. В частности, в качестве оператора $A$ можно взять оператор Лапласа с условием Дирихле. Сначала доказано существование и единственность решения прямой задачи. Затем с помощью представления решения прямой задачи доказывается существование и единственность обратной задачи нахождения правой части уравнения, зависящей только от пространственной переменной.
The article studies direct and inverse problems for subdiffusion equations involving a Hilfer fractional derivative. An arbitrary positive self-adjoint operator $A$ is taken as the elliptic part of the equation. In particular, as the operator $A$ we can take the Laplace operator with the Dirichlet condition. First, the existence and uniqueness of a solution to the direct problem is proven. Then, using the representation of the solution to the direct problem, the existence and uniqueness of the inverse problem of finding the right-hand side of the equation, which depends only on the spatial variable, is proved.
-
Утверждается, что если в дополнение к условиям существования и единственности решения x(t, t0, μ) n-векторной задачи Коши dx/dt = f(t, x, μ) (t ∈ I, μ ∈ M), x(t0) = x0 и непрерывной зависимости его от параметра μ ∈ M потребовать равностепенную непрерывность семейства {f(t, x, ·)}(t,x), то x(t, t0, μ) равномерно непрерывно зависит от параметра μ на открытом множестве M. Для линейной n×n-матричной задачи Коши dX/dt = A(t, μ)X + (t, μ) (t ∈ I, μ ∈ M), X(t0, μ) = X0(μ) аналогичное утверждение доказывается в предположении равномерной произвольной малости интегралов ∫I||A(t, μ1) − A(t, μ2)|| dt и ∫I||(t, μ1) − (t, μ2)|| dt при достаточной малости ||μ1 − μ2|| (μ1, μ2 ∈ M).
We prove that if, in addition to the assumptions that guarantee existence, uniqueness and continuous dependence on parameter μ ∈ M of solution x(t, t0,μ) of a n-dimensional Cauchy problem dx/dt = f(t, x, μ) (t ∈ I, μ ∈ M), x(t0) = x0 one requires that the family {f(t, x, ·)}(t,x) is equicontinuous, then the dependence of x(t, t0,μ) on parameter μ in an open M is uniformly continuous. Analogous result for a linear n × n-dimensional Cauchy problem dX/dt = A(t, μ)X + (t, μ) (t ∈ I, μ ∈ M), X(t0, μ) = X0(μ) is valid under the assumption that the integrals ∫I||A(t, μ1) − A(t, μ2)||dt and ∫I||(t, μ1) − (t, μ2)||dt are uniformly arbitrarily small, provided that ||μ1 − μ2||, μ1, μ2 ∈ M, is sufficiently small.
-
Рассматриваются вопросы разрешимости краевых задач для линейных функционально-дифференциальных уравнений. Предлагаются утверждения, позволяющие получать условия существования единственного решения, неотрицательности функции Грина и фундаментального решения однородного уравнения. Для применения этих утверждений требуется задать «эталонную» краевую задачу, обладающую соответствующими свойствами, и определить некоторый оператор по приведенному правилу через операторы, порожденные исследуемой и «эталонной» задачами. Если спектральный радиус этого оператора меньше 1, то рассматриваемая краевая задача однозначно разрешима. Аналогично: для получения условий неотрицательности функции Грина и фундаментального решения требуется определить по приведенному в работе правилу специальный оператор и проверить его положительность. Рассмотрен пример применения полученных утверждений к конкретной краевой задаче с интегральным краевым условием для уравнения, содержащего отклонения в аргументе неизвестной функции и ее производной.
линейное функционально-дифференциальное уравнение, краевая задача, функция Грина, фундаментальное решение однородного уравнения, положительный оператор
Comparison of solutions to boundary-value problems for linear functional-differential equations, pp. 284-292We consider the issues of solvability of boundary value problems for linear functional-differential equations. Statements allowing one to obtain conditions for the existence of a unique solution and for non-negativity of the Green's function, and to obtain a fundamental solution to the homogeneous equation are suggested. In order to apply these statements, one needs to define a “reference” boundary value problem that possesses the corresponding properties and to define an operator by means of the operators generated by the problem under study and the “reference” problem according to the given rule. If the spectral radius of this operator is less than 1, then the boundary value problem under consideration is uniquely solvable. Similarly, in order to obtain conditions for the nonnegativity of the Green's function and the fundamental solution, it is required to determine a special operator by the rule given in the paper and to verify its positivity. An example of application of the statements obtained to a particular boundary value problem with an integral boundary condition for the equation containing argument deviations to the unknown function and to its derivative is considered.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.