Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Устойчивые уединенно-волновые решения обобщенного уравнения Буссинеска-Островского шестого порядка, с. 338-347Проведен обзор моделей, приводящих к неинтегрируемому уравнению Островского и его обобщениям, не имеющим точных уединенно-волновых решений. Приведен краткий вывод уравнения Островского для продольных волн в геометрически нелинейном стержне, лежащем на упругом основании. Показано, что в случае осесимметричного распространения пучка продольных волн в физически нелинейной цилиндрической оболочке, взаимодействующей с нелинейно-упругой средой, для компоненты перемещения возникает обобщенное уравнение Буссинеска-Островского шестого порядка. Построено точное кинкоподобное решение этого уравнения, установлена связь с обобщенным нелинейным уравнением Шрёдингера и найдено решение последнего уравнения в форме устойчивой солитоноподобной бегущей волны с монотонно затухающими или колебательными хвостами.
нелинейные эволюционные уравнения, уединенно-волновые решения, обобщенное нелинейное уравнение Шрёдингера
Steady solitary wave solutions of the generalized sixth-order Boussinesq-Ostrovsky equation, pp. 338-347An overview of models that lead to the nonintegrable Ostrovsky equation and its generalizations having no exact solitary-wave solutions is given. A brief derivation of the Ostrovsky equation for longitudinal waves in a geometrically nonlinear rod lying on an elastic foundation is performed. It is shown that in the case of axially symmetric propagation of longitudinal waves in a physically nonlinear cylindrical shell interacting with a nonlinear elastic medium the displacement component obeys the generalized sixth-order Boussinesq-Ostrovsky equation. We construct an exact kink-like solution of this equation, establish a connection with the generalized nonlinear Schrödinger (GNLS) equation and find the steady travelling wave solution of the GNLS in the form of simple soliton with monotonic or oscillating tails.
-
Оболочечный аналог теоремы о пяти моментах, с. 100-106Полученный ранее для длинной многоопорной цилиндрической оболочки аналог балочной теоремы о трех моментах, основанный на замечательных свойствах простого краевого эффекта, обобщается на случай упругоподатливых опор в виде так называемого оболочечного аналога теоремы о пяти моментах.
теоремы о трех и пяти моментах, расчленение напряженно-деформированного состояния, реакции опор, балка, оболочка, температурный перепад.In this paper we generalize the analogue of the three-moment theorem in the theory of shells, which has been earlier obtained for the long cylindrical shell with several supports, to the case of flexible supports as a so-called "shell" analogue of the five-moment theorem.
-
В работе рассматривается безвинтовой робот, перемещающийся по поверхности жидкости за счет вращения внутреннего ротора. Корпус робота в сечении имеет форму симметричного крылового профиля NACA 0040. Записаны уравнения движения в виде классических уравнений Кирхгофа, дополненных слагаемыми, описывающими вязкое сопротивление. На основе анализа полученной модели предложен закон управления. Проведены исследования влияния различных параметров модели на траекторию движения робота.
Simulation of the motion of a propellerless mobile robot controlled by rotation of the internal rotor, pp. 645-656We consider a propellerless robot that moves on the surface of a fluid by rotating of the internal rotor. The robot shell has a symmetric shape of NACA 0040 airfoil. The equations of motion are written in the form of classical Kirchhoff equations with terms describing the viscous friction. The control action based on the derived model is proposed. The influences of various model parameters on the robot's trajectory have been studied.
-
Анализ собственных колебаний усеченных конических оболочек переменной толщины, заполненных жидкостью, с. 452-468Представлены результаты численных исследований собственных колебаний усеченных прямых конических оболочек вращения, полностью заполненных идеальной сжимаемой жидкостью. Толщина оболочек непостоянна вдоль образующей и изменяется по различным законам. Поведение упругой конструкции и жидкой среды описывается в рамках классической теории оболочек, основанной на гипотезах Кирхгофа–Лява, и уравнений Эйлера. Уравнения движения оболочки совместно с соответствующими геометрическими и физическими соотношениями сводятся к системе обыкновенных дифференциальных уравнений относительно новых неизвестных. Акустическое волновое уравнение, записанное относительно гидродинамического давления, преобразуется к системе дифференциальных уравнений с помощью метода обобщенных дифференциальных квадратур. Решение сформулированной краевой задачи осуществляется методом ортогональной прогонки Годунова и сводится к вычислению собственных частот колебаний. Для этой цели используется сочетание пошаговой процедуры с последующим уточнением найденных значений в полученном диапазоне методом Мюллера. Достоверность получаемых результатов подтверждена сравнением с известными численными решениями. Для оболочек с различными углами конусности и комбинациями граничных условий (свободное опирание, жесткое и консольное закрепления) исследованы зависимости низших частот колебаний, полученных при степенном (линейном и квадратичном, имеющих симметричную и несимметричную формы) и гармоническом (с положительной и отрицательной кривизной) изменении толщины. Оценено влияние граничных условий на возможность существования конфигураций (угол конусности, закон изменения толщины, отношение максимальной и минимальной толщины профиля), обеспечивавших повышение фундаментальной частоты по сравнению с оболочками постоянной толщины при ограничениях на вес конструкции.
классическая теория оболочек, прямая коническая оболочка, метод ортогональной прогонки Годунова, идеальная сжимаемая жидкость, метод обобщенных дифференциальных квадратур, собственные колебания, переменная толщина
Analysis of natural vibrations of truncated conical shells of variable thickness filled with fluid, pp. 452-468The article presents the results of numerical studies of natural vibrations of truncated straight conical shells of revolution completely filled with an ideal compressible fluid. The shell thickness is not constant along the generatrix and changes according to various laws. The behavior of the elastic structure and liquid medium is described in the framework of the classical shell theory, which is based on the Kirchhoff–Love hypotheses and the Euler equations. The equations of shell motion together with the corresponding geometric and physical relations are reduced to a system of ordinary differential equations with respect to new unknowns. The acoustic wave equation written with respect to the hydrodynamic pressure is transformed to a system of differential equations using the method of generalized differential quadrature. The solution of the formulated boundary value problem is developed by the Godunov orthogonal sweep method and is reduced to the calculation of natural vibrational frequencies. To this end, a step-by step computational procedure is applied in combination with the subsequent refinement of the found values in the obtained range by the Muller method. The validity of the results obtained is verified by comparison with the known numerical solutions. For shells with different cone angles and combinations of boundary conditions (free support, rigid clamping and cantilevered support), the dependence of the lowest vibration frequencies obtained with a power (linear and quadratic, having symmetric and asymmetric forms) and harmonic (with positive and negative curvature) thickness change were investigated. The influence of boundary conditions on the possibility of the existence of configurations (cone angle, law of thickness variation, ratio of maximum or minimum cross-section thickness) that ensured an increase in the fundamental frequency compared to shells of constant thickness with restrictions on the weight of the structure was estimated.
-
Разработаны математические модели и сформулирована нелинейная краевая задача динамики тонкостенных оболочечных конструкций произвольной формы под действием ударного импульсного нагружения. Приводятся результаты моделирования нелинейных волновых процессов в составной оболочечной конструкции под действием взрыва.
Mathematical models were developed and the nonlinear boundary value problem of dynamics thinwalled shells of the arbitrary form under action shock pulse is formulated. Dependence of processes of deformation on speed loading, compressibility of a material, finite deformations and large displacements of a shell middle surface, formation and kinetic of plasticity zones of a material during action of a shock wave are considered. Parameterization of a shell surface is carried out by bi-cubic splines. For the description of nonlinear, time and speed dependents of a shell material behavior with anisotropic hardening the generalized model of microplasticity is developed on the account of viscosity of deformation, hysteresis losses and Baushinger's effect. The solution of boundary value problems on the basis of difference schemes is constructed. Results of modeling of nonlinear wave processes in a assemble shell under action of explosion also are presented.
-
Рассмотрена модель, описывающая движение водного робота с корпусом в форме симметричного крылового профиля NACA0040. Управление движением осуществляется с помощью периодических колебаний ротора. Численно показано, что при физически допустимых значениях параметров управления в фазовом пространстве системы существует только один предельный цикл. Предельный цикл, возникающий при симметричном управлении, соответствует в среднем направленному продвижению робота. В случае несимметричных управлений реализуется движение вблизи окружности. Предложен алгоритм управления курсом движения робота, использующий обнаруженные предельные циклы и переходные процессы между ними.
A model governing the motion of an aquatic robot with a shell in the form of a symmetrical airfoil NACA0040 is considered. The motion is controlled by periodic oscillations of the rotor. It is numerically shown that for physically admissible values of the control parameters in the phase space of the system, there exists only one limit cycle. The limit cycle that occurs under symmetric control corresponds to the motion of the robot near a straight line. In the case of asymmetric controls, the robot moves near a circle. An algorithm for controlling the course of the robot motion is proposed. This algorithm uses determined limit cycles and transient processes between them.
-
Исследована устойчивость катящейся по горизонтальной плоскости сферической оболочки с гироскопом Лагранжа внутри. Проведен линейный анализ устойчивости для верхнего и нижнего положений волчка, построена бифуркационная диаграмма системы, получены и проанализированы траектории точки контакта при различных значениях интегралов движения.
Stability analysis of periodic solutions in the problem of the rolling of a ball with a pendulum, pp. 146-155In the paper we study the stability of a spherical shell rolling on a horizontal plane with Lagrange’s gyroscope inside. A linear stability analysis is made for the upper and lower position of a top. A bifurcation diagram of the system is constructed. The trajectories of the contact point for different values of the integrals of motion are constructed and analyzed.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.



