Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'вариационная задача':
Найдено статей: 15
  1. Азбелев Н.В., Максимов В.П., Симонов П.М.
    Функционально-дифференциальные уравнения и их приложения, с. 3-23

    Предлагается обзор современного состояния теории функционально-дифференциальных уравнений, разработанной участниками Пермского семинара. Приводятся примеры новых подходов к ряду классических задач.

  2. Бадриев И.Б., Исмагилов И.Н., Исмагилов Л.Н.
    Метод решения нелинейных стационарных анизотропных задач фильтрации, с. 3-11

    Работа посвящена методу решения стационарных задач фильтрации несжимаемой жидкости, следующей нелинейному анизотропному многозначному закону фильтрации с предельным градиентом. Задача фильтрации сформулирована в виде вариационного неравенства второго рода с обратно сильно монотонным оператором в гильбертовом пространстве. Функционал, входящий в это вариационное неравенство, является суммой нескольких полунепрерывных снизу выпуклых собственных функционалов. Для решения вариационного неравенства предлагается использовать итерационный метод расщепления.

  3. Работа посвящена изучению оценок скалярных произведений векторных полей и их применению при доказательстве разрешимости задач математической физики. В работе доказаны оценки скалярных произведений векторных полей в весовых функциональных пространствах суммируемых функций. В качестве примера применения таких оценок доказана разрешимость задачи об определении стационарного магнитного поля в трёхмерном евклидовом пространстве, содержащем ограниченную проводящую область. Также показана связь предложенной постановки задачи и соответствующей вариационной формулировки. Изучена возможность определения остальных неизвестных функций (электрического поля, объёмной плотности электрических зарядов) внутри проводящей подобласти.

  4. В первой части определено и исследовано нелинейное метрическое пространство $\langle\overline{\rm G}^\infty[a,b],d\rangle$, состоящее из функций, действующих из отрезка $[a,b]$ в расширенную числовую ось $\overline{\mathbb R}$. По определению предполагается, что для любых $x\in\overline{\rm G}^\infty[a,b]$ и $t\in(a,b)$ существуют предельные числа $x(t-0),x(t+0)\in\overline{\mathbb R}$ (и числа $x(a+0),x(b-0)\in\overline{\mathbb R}$). Доказана полнота пространства. Оно является замыканием пространства ступенчатых функций в метрике $d$. Во второй части работы определено и исследовано нелинейное пространство ${\rm RL}[a,b]$. Всякая кусочно-гладкая функция, определенная на $[a,b]$, содержится в ${\rm RL}[a,b]$. Всякая функция $x\in{\rm RL}[a,b]$ имеет ограниченное изменение. Для нее определены все односторонние производные (со значениями в метрическом пространстве $\langle\overline{\mathbb R},\varrho\rangle$). Функция левосторонних производных непрерывна слева, а функция правосторонних производных непрерывна справа. Обе функции, доопределенные на весь отрезок $[a,b]$, принадлежат пространству $\overline{\rm G}^\infty[a,b]$. В заключительной части работы определены и исследованы два подпространства пространства ${\rm RL}[a,b]$. В подпространствах сформулированы и обсуждены перспективные постановки для простейших вариационных задач.

  5. Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами  решениями однородных, автономных линейных разностных или дифференциальных уравнений.

  6. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

  7. Исследуются задачи о равновесии трансверсально-изотропной пластины с жесткими включениями. Предполагается, что пластина деформируется в рамках гипотез классической теории упругости. Задачи формулируются в виде минимизации функционала энергии пластины на выпуклом и замкнутом подмножестве пространства Соболева. Установлено, что предельный переход по геометрическому параметру в задачах о равновесии пластины с объемным включением приводит к задаче о пластине с тонким жестким включением. Исследован также случай отслоения тонкого жесткого включения - когда трещина в пластине расположена вдоль одного из берегов включения. В задаче о пластине с отслоившимся тонким включением на трещине задается нелинейное условие непроникания. Это условие имеет вид неравенства (типа Синьорини) и описывает взаимное непроникание противоположных берегов трещины. Для задачи с отслоившимся включением, при достаточной гладкости решения, установлена эквивалентность вариационной и дифференциальной формулировок. Также получены соотношения, описывающие контакт противоположных берегов трещины. Относительно каждой из рассмотренных вариационных задач установлена однозначная разрешимость.

  8. В настоящей работе проведено исследование модели деформаций системы из $n$ стилтьесовских струн, расположенных вдоль геометрического графа-звезды, с нелинейным условием в узле. Соответствующая граничная задача имеет вид $$ \left\{\begin{array}{lll} -\left(p_iu_i^\prime\right)(x)+\displaystyle{\int_{0}^{x}}u_i\,dQ_i=F_i(x)-F_i(+0)-(p_iu_i')(+0),\quad i=1,2, \ldots, n,\\ \sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0),\\ u_1(0)=u_2(0)=\ldots=u_n(0)=u(0),\\ (p_iu_i')(l_i-0)+u_i(l_i)\Delta Q_i(l_i)=\Delta F_i(l_i),\quad i=1,2,\ldots, n. \end{array} \right. $$ Здесь функции $u_i(x)$ определяют деформации каждой из струн; $F_i(x)$ описывают распределение внешней нагрузки; $p_i(x)$ характеризуют упругость струн; $Q_i(x)$ описывают упругую реакцию внешней среды. Скачок $\Delta F_i(l_i)$ равняется сосредоточенной в точке $l_i$ внешней силе; скачок $\Delta Q_i(l_i)$ совпадает с жесткостью упругой опоры (пружины), прикрепленной к точке $l_i$. Условие $\sum\limits_{i=1}^np_i(+0)u_i'(+0)\in N_{[-m,m]}u(0)$ возникает за счет наличия в узле ограничителя, представленного отрезком $[-m,m]$, на перемещение струн под воздействием внешней нагрузки, то есть предполагается, что $|u(0)|\leq m$. Здесь через $N_{[-m,m]}u(0)$ обозначен нормальный конус к $[-m,m]$ в точке $u(0)$. В работе проведен вариационный вывод модели; доказаны теоремы существования и единственности решения; проанализированы критические нагрузки, при которых происходит соприкосновение струн с ограничителем; приведена явная формула представления решения.

  9. Рассматривается одна из версий обобщенного вариационного уравнения Гинзбурга-Ландау, дополненная периодическими краевыми условиями. Для такой краевой задачи изучен вопрос о существовании, устойчивости и локальных бифуркациях одномодовых состояний равновесия. Показано, что в случае близком к критическому трехкратного нулевого собственного значения в задаче об устойчивости одномодовых пространственно неоднородных состояний равновесия реализуются докритические бифуркации двумерных инвариантных торов, заполненных пространственно неоднородными состояниями равновесия. Анализ поставленной задачи опирается на такие методы теории бесконечномерных динамических систем как теория инвариантных многообразий и аппарат нормальных форм. Для решений, формирующих инвариантные торы, получены асимптотические формулы.

  10. Сформулирована вариационная постановка задачи для обобщенной формы термодинамического функционала, заключающаяся в его минимизации относительно искомой скорости распространения пламени как дополнительной переменной. Для стационарного состояния рассмотренного функционала получено интегральное соотношение для скорости распространения пламени.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref