Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'вероятность протекания':
Найдено статей: 3
  1. На основе известных свойств функции вероятности протекания простой кубической решётки размера L=2 в приближении линейной связи порога протекания бесконечной решётки xc и среднего значения xcL конечной решётки введена нескейлинговая функция вероятности протекания для решётки размера L>2. Показано, что на пороге протекания нескейлинговые вероятности для всех ПК решёток одинаковы.
    Компьютерные эксперименты на основе метода Монте-Карло согласуются с предлагаемой в работе теорией.

  2. По введенной функции вероятности протекания в модели решетки Бете определен порог протекания простой кубической решетки в задаче узлов: xc(s.c.)=0,3116865.

  3. Изучена проводимость (входящая в закон связи потока и обобщенной силы) перколяционной системы, состоящей из проводящей и непроводящей фаз. На основе представлений Шкловского-де Жена о топологической структуре бесконечного кластера установлена связь проводимости с вероятностью протекания. Получена зависимость решеточной проводимости в широком диапазоне изменения концентрации проводящей фазы. Показано согласование теории и компьютерного эксперимента, а также согласование скейлинговой зависимости проводимости (при критическом индексе из следствия гипотезы Александера-Орбаха) для квадратной и простой кубической решеток.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref