Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Углеродные нанотрубки активно исследуются в физической литературе в последние два десятилетия. Уникальные физические свойства, в частности высокая прочность и проводимость, обуславливают многообещающие возможности их применения в микроэлектронике. Несмотря на физическую актуальность этих задач, математически такие структуры исследовались очень мало. В данной работе в приближении сильной связи рассматривается гамильтониан электрона в однослойной нанотрубке типа «зигзаг» с примесью, равномерно распределенной в сечении нанотрубки. С помощью уравнения Липпмана-Швингера исследуется задача рассеяния для данного гамильтониана в случае малого потенциала примеси и медленных электронов. Поскольку электронная проводимость пропорциональна вероятности прохождения, фактически при этом изучается задача проводимости в нанотрубке. Получены простые формулы для коэффициентов отражения и прохождения. Найдены условия полного отражения и полного прохождения, а также условия возрастания и убывания вероятности прохождения.
-
Перколяционная модель проводимости двухфазной решетки: теория и компьютерный эксперимент, с. 112-122Изучена проводимость (входящая в закон связи потока и обобщенной силы) перколяционной системы, состоящей из проводящей и непроводящей фаз. На основе представлений Шкловского-де Жена о топологической структуре бесконечного кластера установлена связь проводимости с вероятностью протекания. Получена зависимость решеточной проводимости в широком диапазоне изменения концентрации проводящей фазы. Показано согласование теории и компьютерного эксперимента, а также согласование скейлинговой зависимости проводимости (при критическом индексе из следствия гипотезы Александера-Орбаха) для квадратной и простой кубической решеток.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.