Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=Q_0 y(t)+Q_1 y(t-h)$. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты $Q_0$, $Q_1$ обратной связи таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Полученные результаты распространяются на системы с несколькими запаздываниями. Получены следствия о стабилизации системы $(1)$, а также системы вида $(1)$ с несколькими запаздываниями, посредством линейной статической обратной связи по выходу с запаздыванием.
-
Рассматривается билинейная управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием в состоянии. Исследуется задача назначения произвольного конечного спектра посредством стационарного управления. Требуется построить постоянный вектор управления таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Критерий выражен в терминах ранговых условий для матриц специального вида. Показана взаимосвязь этих ранговых условий со свойством согласованности усеченной системы без запаздывания. Получены следствия о стабилизации билинейной системы с запаздыванием. Результаты обобщают полученные ранее результаты о назначении спектра для линейных систем со статической обратной связью по выходу с запаздыванием и для билинейных систем без запаздывания. Полученные результаты переносятся на билинейные системы с запаздыванием с дискретным временем. Рассмотрен иллюстрирующий пример.
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с сосредоточенными и распределенными запаздываниями по состоянию. Управление в системе строится в виде линейной статической обратной связи по выходу с сосредоточенными и распределенными запаздываниями в тех же узлах. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты обратной связи таким образом, чтобы характеристическая функция замкнутой системы обращалась в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Получены следствия о стабилизации системы с несколькими запаздываниями посредством линейной статической обратной связи по выходу с запаздываниями.
-
Для динамической системы, подверженной воздействиям управления и помехи и содержащей последействие в управляющих силах, рассматривается задача об управлении с оптимальным гарантированным результатом для показателя качества, представляющего собой евклидову норму совокупности отклонений движения системы в заданные моменты времени от заданных целей. На основе функциональной трактовки, опирающейся на своеобразный прогноз движений, исходная задача сводится к вспомогательной дифференциальной игре для системы без запаздывания и с терминальной платой. Функция цены этой игры вычисляется на базе конструкции выпуклых сверху оболочек вспомогательных функций из метода стохастического программного синтеза, оптимальные стратегии строятся методом экстремального сдвига на сопутствующие точки. Рассматриваются иллюстрирующие примеры, приводятся результаты численных экспериментов.
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с соизмеримыми запаздываниями в состоянии $$ \dot x(t)=Ax(t)+\sum\limits_{j=1}^sA_jx(t-jh)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad \qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=\sum\limits_{\rho =0}^{\theta}Q_\rho y(t-\rho h)$. Исследуется задача назначения произвольного спектра для замкнутой системы: требуется определить число $\theta$ и построить матрицы $Q_{\rho}$, $\rho=0,\ldots,\theta$, обратной связи таким образом, чтобы характеристическая функция замкнутой системы с соизмеримыми запаздываниями обращалась в квазиполином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения произвольного спектра. Получены следствия о стабилизации системы $(1)$ посредством линейной статической обратной связи по выходу с соизмеримыми запаздываниями. Рассмотрен иллюстрирующий пример.
-
Рассматривается линейная система управления, заданная стационарным дифференциальным уравнением с одним сосредоточенным и одним распределенным запаздыванием. В системе на вход подается линейная комбинация из $m$ сигналов и их производных до порядка $n-p$ включительно, а выход представляет собой $k$-мерный вектор линейных комбинаций состояния и его производных до порядка не более $p-1$. Для этой системы исследуется задача управления спектром с помощью линейной статической обратной связи по выходу с сосредоточенным и распределенным запаздываниями. Получены необходимые и достаточные условия разрешимости задачи произвольного размещения спектра посредством статической обратной связи по выходу, имеющей тот же вид, что и система. Получены следствия о стабилизации системы.
-
Для линейной автономной регулярной алгебро-дифференциальной системы с соизмеримыми запаздываниями в управлении решена задача успокоения решения посредством динамического регулятора по типу обратной связи. Основная идея исследования заключается в выборе параметров регулятора так, чтобы замкнутая система стала точечно вырожденной в направлениях, отвечающих фазовым компонентам исходной (разомкнутой) системы. Для этого исходная система преобразуется к двум подсистемам, одна из которых соответствует алгебраической части, а вторая - дифференциальной. Далее для объекта, соответствующего дифференциальной части, строится динамический регулятор, обеспечивающий вырождение соответствующих фазовых компонент. Отличительной чертой работы является возможность обеспечить замкнутой системе наперед заданный конечный спектр, за счет выбора которого замкнутая система может быть сделана асимптотически устойчивой. Изучается возможность такого управления системой в случае отсутствия у нее свойства полной управляемости. В доказательстве основного результата приводится поэтапная процедура построения такого регулятора. Результаты исследования проиллюстрированы конкретным числовым примером.
-
Численное решение задачи оптимального быстродействия для линейных систем с запаздыванием, с. 100-105Предлагается численный метод решения задачи оптимального быстродействия для линейных систем с постоянным запаздыванием. Доказано, что этот итерационный метод сходится за конечное число итераций к ε-оптимальному решению. Под ε-оптимальным решением понимается пара {T, u}, где u = u(t), t ∈ [0, T] допустимое управление, под действием которого управляемая система переходит в ε-окрестность начала координат за время T ≤ Tmin, Tmin время оптимального по быстродействию перехода в начало координат. Достаточно общая задача быстродействия с запаздыванием исследована в работе [Васильев Ф.П., Иванов Р.П. О приближенном решении задачи быстродействия с запаздыванием //Журнал вычислительной математики и математической физики. 1970. Т. 10, № 5. С. 1124–1140.], предложено ее приближенное решение и обсуждены вычислительные аспекты. Однако для решения вспомогательных задач оптимального управления, возникающих при применении предлагаемых способов решения задачи быстродействия, предлагается использовать методы градиентного и ньютоновского типов, которые имеют локальную сходимость. Предложенный нами метод имеет глобальную сходимость.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.