Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'конечно-аддитивная мера':
Найдено статей: 9
  1. Рассматривается игровая задача на максимин функции платы, определенной на произведении множеств притяжения терминальных состояний систем первого и второго игрока. Данные множества притяжения найдены с помощью конструкций расширения в классе конечно-аддитивных мер.

  2. Рассматривается абстрактная  задача управления и ее релаксации, связанные с ослаблением ограничений на выбор управляющих программ. Исследуются соотношения, связывающие множества допустимых элементов исходной задачи и ее расширения. Получены условия, достаточные для устойчивости (с точностью до замыкания) достижимого множества невозмущенной задачи.

  3. Рассматриваются конструкции, связанные с представлением свободных $\sigma$-мультипликативных ультрафильтров широко понимаемых измеримых пространств. В основе построений находятся представления, связанные с применением открытых ультрафильтров в случаях кофинитной и косчетной топологий. Такие ультрафильтры сохраняются (как максимальные фильтры) при замене топологий соответственно алгеброй и $\sigma$-алгеброй, порожденных упомянутыми топологиями. В (основном) случае косчетной топологии устанавливается единственность $\sigma$-мультипликативного свободного ультрафильтра, составленного из непустых открытых множеств. Показано, что данное свойство сохраняется для $\sigma$-алгебр, содержащих косчетную топологию. Указаны две топологии пространства ограниченных конечно-аддитивных борелевских мер, для которых ультрафильтр непустых открытых множеств определяет одноэлементный нарост секвенциально замкнутого множества мер Дирака, возникающий при построении замыкания.

  4. Для абстрактной задачи управления рассматривается конструкция расширения в классе векторных конечно-аддитивных мер и исследуются условия асимптотической нечувствительности достижимого множества при ослаблении части ограничений.

  5. Рассматривается задача управления линейной системой нейтрального типа с импульсными ограничениями. Кроме того, предполагается заданной система промежуточных условий. Исследуется постановка, в которой допускается исчезающе малое ослабление упомянутых ограничений. В этой связи область достижимости (ОД) в фиксированный момент окончания процесса заменяется естественным асимптотическим аналогом — множеством притяжения (МП). Для построения последнего используется конструкция расширения в классе конечно-аддитивных (к.-а.) мер, используемых в качестве обобщенных управлений. Показано, что МП совпадает с ОД системы в классе обобщенных управлений – к.-а. мер. Исследуется структура упомянутого МП.

  6. Рассматривается «аддитивная» задача последовательного обхода мегаполисов (непустых конечных множеств), при посещении которых выполняются некоторые работы; перемещения и выполняемые работы оцениваются функциями стоимости, допускающими зависимость от списка заданий. Имеются ограничения различных типов, среди которых выделяются условия предшествования, используемые «в положительном направлении» (в интересах снижения сложности вычислений). Кроме того, в постановке присутствуют динамические ограничения, формирующиеся по мере выполнения заданий. Исследуемая постановка ориентирована на инженерные приложения, связанные с листовой резкой на машинах с ЧПУ. Исследуется подход к построению оптимальных решений на основе нестандартной версии динамического программирования (ДП). В рамках данного подхода учитываются ограничения различных типов, включая динамические ограничения, естественно возникающие при листовой резке деталей (в частности учитываются тепловые допуски, связанные с надежным отводом тепла из окрестностей точек врезки). При этом допускается комбинация «прямых» запретов на перемещения и выполнение врезки, а также системы штрафов. В последнем случае типично возникают функции стоимости с зависимостью от списка заданий. Применяемый вариант ДП позволяет оптимизировать точку старта, маршрут, отождествляемый с перестановкой индексов, и трассу (траекторию), согласованную с данным маршрутом. На этапе построения функции Беллмана используется экономичный вариант ДП, при котором весь массив значений этой функции не насчитывается, а определяется только система ее слоев (при условиях предшествования, типичных для задачи, связанной с листовой резкой, это приводит к существенному снижению вычислительных затрат). На основе ДП построен оптимальный алгоритм, реализованный на ПЭВМ; приведены результаты вычислительного эксперимента.

  7. Рассматривается игровая задача на максимин в условиях последовательного ослабления моментных ограничений. Конструируется расширение в классе конечно-аддитивных мер, реализующее асимптотику значений максимина при нарастающей точности соблюдения ограничений. Установлены эффективно проверяемые достаточные условия устойчивости «по максимину» (при ослаблении моментных ограничений).

  8. Рассматривается линейная игровая задача управления на максимин с ограничениями асимптотического характера (ОАХ), которые естественно возникают в связи с реализацией «узких» управляющих импульсов. В содержательном отношении это соответствует импульсным режимам управления с полным расходованием топлива. Возникающая игровая задача отвечает использованию асимптотических режимов управления обоими игроками, что отражено в концепции расширения, реализуемой в классе конечно-аддитивных мер. Исходная содержательная задача управления для каждого из игроков рассматривается как вариант абстрактной постановки, связанной с достижимостью при ОАХ, для которой построена соответствующая обобщенная задача о достижимости и установлено представление множества притяжения (МП), играющее роль асимптотического аналога области достижимости в классической теории управления. Данная конкретизация реализуется для каждого из игроков, на основе чего получается обобщенный максимин, для которого затем указан вариант асимптотической реализации в классе обычных управлений. Получено «конечномерное» описание МП, позволяющее находить упомянутый максимин с применением численных методов. Рассмотрено решение модельного примера задачи об игровом взаимодействии двух материальных точек, включающее этап компьютерного моделирования.

  9. Рассматриваются вопросы, связанные с представлением ультрафильтров измеримых пространств и конечно-аддитивных (0,1)-мер в интересах последующего применения в конструкциях расширений абстрактных задач о достижимости и экстремальных задач. Исследуются свойства, связанные с применением (обобщенных) декартовых произведений и их подпространств, а также свойство, имеющее смысл отождествимости ультрафильтров и конечно-аддитивных (0,1)-мер и реализуемое в виде гомеоморфизма естественных топологий.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref