Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассмотрены трехмерные задачи узлов для простой кубической решетки и твердых сфер, находящихся в хаотическом движении. Установлены дополнительные (к двухпоказательному скейлингу) соотношения между индексами: 2-α-γ=ν (или νd-γ=ν) и β=-2α. Определены численные значения трехмерных критических индексов: α=-2/11, η=0, β=4/11, ν=8/11, γ=16/11 и δ=5.
-
Перколяционная модель проводимости двухфазной решетки: теория и компьютерный эксперимент, с. 112-122Изучена проводимость (входящая в закон связи потока и обобщенной силы) перколяционной системы, состоящей из проводящей и непроводящей фаз. На основе представлений Шкловского-де Жена о топологической структуре бесконечного кластера установлена связь проводимости с вероятностью протекания. Получена зависимость решеточной проводимости в широком диапазоне изменения концентрации проводящей фазы. Показано согласование теории и компьютерного эксперимента, а также согласование скейлинговой зависимости проводимости (при критическом индексе из следствия гипотезы Александера-Орбаха) для квадратной и простой кубической решеток.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.