Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с запаздыванием $$ \dot x(t)=Ax(t)+A_1x(t-h)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad\qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=Q_0 y(t)+Q_1 y(t-h)$. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты $Q_0$, $Q_1$ обратной связи таким образом, чтобы характеристический квазиполином замкнутой системы обращался в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Полученные результаты распространяются на системы с несколькими запаздываниями. Получены следствия о стабилизации системы $(1)$, а также системы вида $(1)$ с несколькими запаздываниями, посредством линейной статической обратной связи по выходу с запаздыванием.
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с сосредоточенными и распределенными запаздываниями по состоянию. Управление в системе строится в виде линейной статической обратной связи по выходу с сосредоточенными и распределенными запаздываниями в тех же узлах. Исследуется задача назначения конечного спектра для замкнутой системы: требуется построить коэффициенты обратной связи таким образом, чтобы характеристическая функция замкнутой системы обращалась в полином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы, при которых найден критерий разрешимости данной задачи назначения конечного спектра. Получены следствия о стабилизации системы с несколькими запаздываниями посредством линейной статической обратной связи по выходу с запаздываниями.
-
Рассматривается управляемая система, заданная линейной стационарной системой дифференциальных уравнений с соизмеримыми запаздываниями в состоянии $$ \dot x(t)=Ax(t)+\sum\limits_{j=1}^sA_jx(t-jh)+Bu(t),\quad y(t)=C^*x(t),\quad t>0. \qquad \qquad (1) $$ Управление в системе $(1)$ строится в виде линейной обратной связи по выходу $u(t)=\sum\limits_{\rho =0}^{\theta}Q_\rho y(t-\rho h)$. Исследуется задача назначения произвольного спектра для замкнутой системы: требуется определить число $\theta$ и построить матрицы $Q_{\rho}$, $\rho=0,\ldots,\theta$, обратной связи таким образом, чтобы характеристическая функция замкнутой системы с соизмеримыми запаздываниями обращалась в квазиполином с произвольными наперед заданными коэффициентами. Получены условия на коэффициенты системы $(1)$, при которых найден критерий разрешимости данной задачи назначения произвольного спектра. Получены следствия о стабилизации системы $(1)$ посредством линейной статической обратной связи по выходу с соизмеримыми запаздываниями. Рассмотрен иллюстрирующий пример.
-
В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с непрерывным и дискретным временем и дискретной памятью. В рамках этого класса предлагается явное представление для основных составляющих представления общего решения — фундаментальной матрицы и оператора Коши. Полученные представления даются в терминах параметров рассматриваемой системы и открывают возможность эффективного исследования общих краевых задач и задач управления относительно заданной конечной системы линейных целевых функционалов. При исследовании упомянутых задач для систем за пределами изучаемого класса рассматриваемые в работе системы с дискретной памятью могут играть роль модельных или аппроксимирующих систем и оказаться полезными при изучении грубых свойств систем с последействием, сохраняющихся при малых возмущениях параметров.
-
В статье рассматривается класс линейных систем функционально-дифференциальных уравнений с последействием, непрерывным и дискретным временем и импульсными воздействиями (импульсные гибридные ФДУ). В центре внимания находятся конструкции операторов, позволяющих дать полное описание всех траекторий гибридной системы, и в терминах этих операторов формулировать условия разрешимости задач управления с выбором управлений из различных классов, давать описание (оценки) множеств достижимости при наличии ограничений на управление, а также получать условия разрешимости общих линейных краевых задач. Дается детальное описание всех компонент оператора Коши, изучаются их свойства. Для компонент с непрерывным временем получены условия их непрерывности по второму аргументу, влияющие на возможность выбора класса управляющих воздействий. Упомянутые конструкции систематически используют результаты о матрицах Коши систем ФДУ с непрерывным временем и систем разностных уравнений с дискретным временем.
-
Рассматривается задача управления линейной системой нейтрального типа с импульсными ограничениями. Кроме того, предполагается заданной система промежуточных условий. Исследуется постановка, в которой допускается исчезающе малое ослабление упомянутых ограничений. В этой связи область достижимости (ОД) в фиксированный момент окончания процесса заменяется естественным асимптотическим аналогом — множеством притяжения (МП). Для построения последнего используется конструкция расширения в классе конечно-аддитивных (к.-а.) мер, используемых в качестве обобщенных управлений. Показано, что МП совпадает с ОД системы в классе обобщенных управлений – к.-а. мер. Исследуется структура упомянутого МП.
-
Для линейных периодических систем с последействием строятся аппроксимирующие характеристические уравнения.
-
О стабилизации систем с последействием, с. 140-141Для линейной управляемой системы с запаздыванием в координатах и в управлении предложен метод построения стабилизирующего управления.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.