Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'невязка':
Найдено статей: 7
  1. В настоящей работе сформулирована, поставлена и решена обратная граничная задача теплопроводности, при условии, что коэффициент теплопроводности является кусочно-постоянным. Эта задача занимает важное место в технике, так как теплонагруженные узлы технических конструкций покрывают теплоизолирующим слоем, термические характеристики которого сильно отличаются от термических характеристик самой конструкции. Подобные задачи находят свое применение при планировании стендовых испытаний летательных аппаратов. Современные композитные материалы решают эту проблему, предоставляя разработчикам целый ряд преимуществ. В ракетных двигателях внутреннюю стенку камеры внутреннего сгорания покрывают теплозащитным слоем, который изготавливают из композитных материалов. Благодаря свойствам этих материалов теплозащитный слой значительно снижает температуру стенки внутреннего сгорания. При решении обратной граничной задачи необходимо учитывать разницу коэффициентов теплопроводности составных частей композитных материалов, из которых изготавливают стенку камеры. Задача исследовалась с помощью ряда Фурье по собственным функциям для уравнения с разрывным коэффициентом. Доказано, что для решения обратной задачи применимо преобразование Фурье по переменной времени. Для решения обратной задачи использовано преобразование Фурье, позволяющее свести обратную задачу к операторному уравнению, которое было решено методом невязки.

  2. Предлагается алгоритм решения задачи устойчивого восстановления неизвестного управления в динамической системе по неточным измерениям текущей фазовой траектории системы.

  3. Определяется параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего волнового уравнения предлагается оптимальный сплайн, дающий наименьшую невязку, представляющую собой квадрат нормы в пространстве L2. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от конечных разностей дискретно заданных начальных и граничных условий исходной задачи. Формула для невязки J представляет собой положительно определенную квадратичную форму от этих же величин. Коэффициенты обеих форм вычислимы через многочлены Чебышева 2-го рода. Явный вид формулы для невязки позволяет при заданной точности вычислений ε > 0 решить неравенство J < ε2 и получить априори достаточное количество узлов разностной схемы.

    Исследования проведены для одного слоя по времени, имеющего два подслоя. Получены разностные формулы начального условия для частной производной по времени. Они позволяют формировать разностную схему для нового слоя, что, в свою очередь, позволяет продолжать итерационный вычислительный процесс по времени сколь угодно далеко.

  4. В предыдущей работе автора определено параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего волнового уравнения предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей. Формула для невязки представляет собой положительно определенную квадратичную форму от этих же величин, однако из-за своей громоздкости она плохо приспособлена для анализа качества аппроксимации исходной задачи при варьировании параметрами.

    Получено альтернативное представление для невязки, представляющее собой положительно определенную квадратичную форму от новых конечных разностей, заданных на границе. Элементы матрицы формы выражаются через многочлены Чебышёва, матрица обратима и такова, что обратная матрица имеет трехдиагональный вид. Эта особенность позволяет получить для спектра матрицы верхние и нижние оценки, не зависящие от размерности N. Данное обстоятельство позволяет провести исследование на качество аппроксимации для разных размерностей N и весовых коэффициентов ω∈[-1,1]. Показано, что наилучшее приближение дает параметр ω=0, а невязка стремится к нулю с ростом N.

  5. В предыдущей работе авторов определено параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего уравнения теплопроводности предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей. Формула для невязки представляет собой положительно определенную квадратичную форму от этих же величин, однако из-за своей громоздкости она плохо приспособлена для анализа качества аппроксимации исходной задачи при варьировании параметрами.

    Получено альтернативное представление для невязки, представляющее собой сумму двух положительно определенных квадратичных форм от новых конечных разностей, заданных на границе. Матрица первой формы имеет второй порядок и очевидный спектр. Элементы второй матрицы порядка N + 1 выражаются через многочлены Чебышева, матрица обратима и такова, что обратная матрица имеет трехдиагональный вид. Эта особенность позволяет получить для спектра матрицы верхние и нижние оценки, не зависящие от размерности N. Данное обстоятельство позволяет провести исследование на качество аппроксимации для разных размерностей N и весовых коэффициентов ω ∈ [−1, 1]. Показано, что наилучшее приближение дает параметр ω = 0, а невязка стремится к нулю с ростом N.

  6. Решение краевой задачи для простейшего волнового уравнения, заданной в прямоугольнике, допускает представление в виде суммы двух слагаемых. Они являются решениями двух краевых задач: в первом случае граничные функции постоянны, а во втором начальные функции имеют специальный вид. Подобная декомпозиция позволяет применять для численного решения обеих задач двумерные сплайны. Первая задача исследована ранее, получен экономичный алгоритм ее численного решения.
    Для решения второй задачи определено конечномерное пространство сплайнов лагранжевого типа, а в качестве решения предложен оптимальный сплайн, дающий наименьшую невязку. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от исходных конечных разностей, заданных на границе.
    Формула для невязки представляет собой сумму двух простых слагаемых и двух положительно определенных квадратичных форм от новых конечных разностей, заданных на границе. Элементы матриц форм выражаются через многочлены Чебышёва, обе матрицы обратимы и таковы, что обратные к ним матрицы имеют трехдиагональный вид. Эта особенность позволяет получить для спектра матриц верхние и нижние оценки и показать, что невязка стремится к нулю с ростом размерности численной задачи. Данное обстоятельство обеспечивает корректность предлагаемого алгоритма численного решения второй задачи, обладающего линейной сложностью вычислений.

  7. Определяется параметрическое семейство конечномерных пространств специальных квадратичных сплайнов лагранжевого типа. В каждом пространстве в качестве решения начально-граничной задачи для простейшего уравнения теплопроводности предлагается оптимальный сплайн, дающий наименьшую невязку, представляющую собой норму в пространстве L2. Для коэффициентов этого сплайна и для его невязки получены точные формулы. Формула для коэффициентов сплайна представляет собой линейную форму от конечных разностей дискретно заданных начальных и граничных условий исходной задачи. Формула для невязки представляет собой положительно определенную квадратичную форму от этих же величин. Коэффициенты обеих форм вычислимы через многочлены Чебышева. Проведены компьютерные исследования качества аппроксимации в зависимости от параметров семейства.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref