Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Индуцированные шумом переходы и деформации стохастических аттракторов в одномерных системах, с. 3-16Исследуется воздействие аддитивных и параметрических шумов на аттракторы одномерной системы, задаваемой стохастическим дифференциальным уравнением Ито. Показано, что в отличие от аддитивных, параметрические возмущения приводят к сдвигу экстремумов функции плотности распределения. Для величины такого сдвига получено разложение по малому параметру интенсивности шума. Показано, что воздействие параметрического шума может изменить не только расположение, но и количество экстремумов плотности распределения. Подробный анализ соответствующих индуцированных шумами явлений проведен для трех динамических моделей. Сравнение погрешности приближений разного порядка для оценки сдвига экстремумов функции плотности представлено на примере линейной модели. Два сценария перехода между унимодальной и бимодальной формами стохастического аттрактора исследованы для систем с разными типами кубической нелинейности.
-
В работе изучается влияние цветного шума на равновесные режимы нелинейных динамических систем. Для исследования реакции системы на малые возмущения используется асимптотический подход, развивающий технику функций стохастической чувствительности. Стохастическая чувствительность равновесия в общей многомерной динамической системе задается некоторой матрицей. Для этой матрицы стохастической чувствительности в работе получено матричное алгебраическое уравнений. Точное решение этого уравнения дается для важного класса нелинейных осцилляторов с возмущениями в форме цветных шумов. Эта теория применяется к параметрическому исследованию отклика электронного генератора с жестким возбуждением на цветные шумы с различным временем корреляции. В работе исследована зависимость дисперсии случайных состояний от характерного времени корреляции. Показано, что эта зависимость может быть немонотонной и иметь максимумы, соответствующие резонансам. В работе обсуждается вероятностный механизм стохастической генерации колебаний больших амплитуд, вызванной цветным шумом.
-
Обсуждаются вопросы построения допустимых управлений в одной задаче оптимального управления нелинейной динамической системой при наличии ограничений на ее текущее фазовое состояние. Рассматриваемая динамическая система описывает управляемое движение ракеты-носителя от точки старта до момента ее выхода на заданную околоземную эллиптическую орбиту. Задача заключается в построении программного управления, которое обеспечивает выведение ракетой-носителем на орбиту полезной нагрузки максимальной массы и выполнение дополнительных ограничений на текущее фазовое состояние системы. Дополнительные ограничения обусловлены необходимостью учитывать величины скоростного напора, углов атаки и скольжения при движении ракеты в плотных слоях атмосферы и осуществлять падение ее отделяемых частей в заданные районы на земной поверхности. Для ракет-носителей ряда классов такая задача равносильна нелинейной задаче быстродействия с фазовыми ограничениями. Предлагаются и численно исследуются два алгоритма построения в этой задаче допустимых управлений, обеспечивающих выполнение указанных дополнительных фазовых ограничений. Методологическую основу одного алгоритма составляет применение некоторого прогнозирующего управления, которое априори строится в задаче быстродействия без учета в ней дополнительных ограничений, а другого - использование специальных режимов управления. Приводятся результаты численного моделирования.
-
Изучается задача о воздействии двухчастотных квазипериодических возмущений на системы, близкие к произвольным нелинейным двумерным гамильтоновым в случае, когда соответствующие возмущенные автономные системы имеют двойной предельный цикл. Ее решение имеет важное значение как для теории синхронизации колебаний, так и для теории бифуркаций динамических систем. В случае соизмеримости собственной частоты невозмущенной системы с частотами квазипериодического возмущения имеет место резонанс. Выводятся усредненные системы, позволяющие установить структуру резонансной зоны, то есть описать поведение решений в окрестностях индивидуальных резонансных уровней. Исследование этих систем позволяет установить возможные бифуркации, возникающие при отклонении резонансного уровня от уровня невозмущенной системы, порождающего двойной предельный цикл в возмущенной автономной системе. Полученные теоретические результаты применяются при исследовании двухчастотного квазипериодически возмущенного уравнения маятникового типа и иллюстрируются при помощи численных вычислений.
-
Рассматриваются две задачи нелинейного гарантированного оценивания фазовых состояний динамических систем. Предполагается, что неизвестные измеримые по $t$ возмущения линейно входят в уравнение движения и аддитивно — в уравнения измерения. Эти возмущения стеснены нелинейными интегральными функционалами, один из которых является аналогом функционала обобщенной работы. Исследуемая задача состоит в построении информационных множеств по данным измерения, содержащих истинное положение траектории. Используется подход динамического программирования. Если для первого функционала требуется решить нелинейное уравнение в частных производных первого порядка, что не всегда возможно, то для функционала обобщенной работы достаточно найти решение линейного уравнения Ляпунова первого порядка, что существенно упрощает задачу. Тем не менее, даже в этом случае приходится налагать дополнительные условия на параметры системы для того, чтобы траектория системы, соответствующая наблюдаемому сигналу, существовала. Если уравнение движения линейно по фазовой переменной, то многие предположения выполняются автоматически. Для этого случая обсуждается вопрос о взаимной оценке сверху и снизу информационных множеств по включению для разных функционалов. В заключение рассмотрен наиболее прозрачный линейно-квадратичный случай. Изложение иллюстрируется примерами.
-
Стохастические дифференциальные системы со случайными запаздываниями в форме дискретных цепей Маркова, с. 501-516В работе дан обзор проблем, приводящих к необходимости анализа моделей линейных и нелинейных динамических систем в форме стохастических дифференциальных уравнений со случайными запаздываниями различного типа, а также представлены некоторые известные методы решения этих задач. Далее в статье предлагаются новые подходы к приближенному анализу линейных и нелинейных стохастических динамических систем, изменения запаздываний которых описываются дискретной марковской цепью с непрерывным временем. Используемые подходы базируются на сочетании классического метода шагов, расширения пространства состояния стохастической системы и метода статистического моделирования (Монте-Карло). В рассматриваемом случае такой подход позволил упростить задачу и привести исходные уравнения к системам стохастических дифференциальных уравнений без запаздывания. Более того, для линейных систем получена замкнутая последовательность систем обыкновенных дифференциальных уравнений увеличивающейся размерности относительно функций условных математических ожиданий и ковариаций вектора состояния. Изложенная схема демонстрируется на примере стохастической системы второго порядка, изменения запаздывания которой описываются марковской цепью с пятью состояниями. Все расчеты и построение графиков проводились в среде математического пакета Mathematica с помощью программы, написанной на входном языке этого пакета.
-
Рассматривается задача приведения траектории в окрестность нуля в условиях воздействия помехи в терминах дифференциальной игры преследования. Динамика описывается нелинейной автономной системой дифференциальных уравнений второго порядка. Множество значений управлений преследователя является конечным, убегающего (помехи) — компакт. Целью управления, то есть целью преследователя, является приведение, в рамках конечного времени, траектории в любую наперед заданную окрестность нуля вне зависимости от действий помехи. Для построения управления преследователю известны только фазовые координаты и значение скорости в некоторые дискретные моменты времени и неизвестен выбор управления помехи. Получены условия существования множества начальных положений, из каждой точки которого происходит поимка в указанном смысле. Причем это множество содержит некоторую окрестность нуля. Выигрышное управление строится конструктивно и имеет дополнительное свойство, указанное в теореме. Кроме того, получена оценка времени приведения скорости из одной заданной точки в окрестность другой заданной точки в условиях воздействия помехи.
-
О движении динамически симметричного спутника в одном случае кратного параметрического резонанса, с. 594-612Исследуются движения динамически симметричного спутника (твердого тела) относительно центра масс в центральном ньютоновском гравитационном поле на слабоэллиптической орбите в окрестности его стационарного вращения (цилиндрической прецессии). Рассматриваются значения параметров, для которых в предельном случае круговой орбиты одна из частот малых линейных колебаний равна единице, а другая нулю, и ранг матрицы коэффициентов линеаризованных уравнений возмущенного движения равен двум, а также малая окрестность этой резонансной точки в трехмерном пространстве параметров. Построены резонансные периодические движения спутника, аналитические по дробным степеням малого параметра (эксцентриситета орбиты центра масс спутника), проведен строгий нелинейный анализ их устойчивости. Методами КАМ-теории описаны двух- и трехчастотные условно-периодические движения спутника, с частотами разного порядка по малому параметру. Обсуждается ряд общетеоретических вопросов, касающихся рассматриваемого кратного параметрического резонанса в близких к автономным, периодических по времени гамильтоновых системах с двумя степенями свободы. Построено несколько качественно различных вариантов областей параметрического резонанса. Показано, что в общем случае характер нелинейных резонансных колебаний системы определяется системой первого приближения по малому параметру.
-
Рассматривается движение твердого тела в однородном поле тяжести в случае высокочастотных вертикальных гармонических колебаний малой амплитуды одной из его точек (точки подвеса). Предполагается, что центр масс тела лежит на одной из главных осей инерции для точки подвеса. В рамках приближенной автономной системы дифференциальных уравнений, записанной в форме канонических уравнений Гамильтона, рассматриваются частные движения тела - перманентные вращения, происходящие вокруг вертикально расположенных осей из главных плоскостей инерции, примыкающих к указанной главной оси. Такие перманентные вращения существуют и для тела с неподвижной точкой подвеса. Исследуется влияние быстрых вибраций на устойчивость этих вращений. Для всех допустимых значений четырехмерного пространства параметров (двух инерционных параметров и параметров, характеризующих частоту вибраций и угловую скорость вращения) выписаны и проиллюстрированы необходимые и в ряде случаев достаточные условия устойчивости, рассматриваемые как условия устойчивости соответствующих положений равновесия приведенной (по Раусу) автономной гамильтоновой системы с двумя степенями свободы. Проведен нелинейный анализ устойчивости для двух частных значений инерционного параметра, отвечающих динамически симметричному телу и телу с геометрией масс для случая Бобылева-Стеклова. Рассмотрены нерезонансный и резонансный случаи, а также случаи вырождения. Проведено сравнение полученных результатов устойчивости с соответствующими результатами для тела с неподвижной точкой.
-
Рассмотрено движение динамически симметричного твердого тела в однородном поле тяжести в случае высокочастотных вертикальных гармонических колебаний малой амплитуды одной из его точек (точки подвеса). Исследование проводится в рамках приближенной автономной системы дифференциальных уравнений, записанной в форме канонических уравнений Гамильтона. Дано подробное описание допустимых дуг перманентных вращений тела, происходящих вокруг вертикально расположенных осей. Выявлены случаи перманентных вращений, обусловленные вибрациями и не существующие для тела с неподвижной точкой. Для одного из таких случаев, когда ось вращения лежит в главной плоскости инерции, не содержащей центр масс тела и не совпадающей с экваториальной плоскостью инерции, проведен полный нелинейный анализ устойчивости соответствующего положения равновесия приведенной системы с двумя степенями свободы. В трехмерном пространстве параметров задачи найдены области устойчивости в линейном приближении. Рассмотрены случаи резонансов третьего и четвертого порядков, а также случаи вырождения.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.