Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'общая топология':
Найдено статей: 6
  1. Доказана теорема, вводящая эквивалентные определения для некоторых пределов сходящихся последовательностей в расширении Белла счетного дискретного пространства.

  2. Рассматривается абстрактная задача о достижимости с ограничениями асимптотического характера. Ограничения такого типа могут возникать при ослаблении стандартных (в теории управления) ограничений, таких как фазовые ограничения, краевые и промежуточные условия, которым должны удовлетворять траектории системы. Однако ограничения асимптотического характера могут возникать и изначально, характеризуя тенденции в части реализации желаемого поведения. Так, например, можно говорить о реализации достаточно мощных импульсов управления исчезающе малой длительности. В этом последнем случае трудно говорить об ослаблении каких-либо стандартных ограничений. Так или иначе, мы сталкиваемся с набором ужесточающихся требований, каждому из которых можно сопоставить некоторый аналог области достижимости в теории управления, а точнее образ подмножества пространства обычных решений (управлений) при действии заданного оператора. В работе исследуются вопросы структуры возникающего (как аналог области достижимости) множества притяжения. Схема исследования базируется на применении специального варианта расширения пространства решений, допускающего естественную аналогию с расширением Волмэна, используемого в общей топологии. В этой ситуации естественно полагать, что пространство обычных решений оснащено некоторой топологией (обычно в этом случае исследуется $T_1$-пространство). В этой связи обсуждаются вопросы, связанные с заменой множеств, формирующих ограничения асимптотического характера, замыканиями и внутренностями, а также (частично) вопросы, связанные с представлением внутренности множества допустимых обобщенных элементов, образующего вспомогательное множество притяжения.

  3. Рассматриваются общие свойства ультрафильтров π-систем с нулем и единицей, используемые при построении расширений абстрактных задач о достижимости для получения оценок множеств притяжения в топологическом пространстве. Обсуждаются возможности использования упомянутых ультрафильтров в качестве обобщенных элементов. Среди последних выделяются допустимые по отношению к ограничениям асимптотического характера исходной задачи. Целевой оператор данной задачи при очень общих условиях продолжается до непрерывного отображения, сопоставляющего каждому ультрафильтру π-системы предел соответствующего образа. При этом основное множество притяжения (асимптотический аналог множества достижимости) оценивается снизу непрерывным образом аналогичного вспомогательного множества в пространстве ультрафильтров. В частном случае реализации пространства Стоуна (когда используемая π-система является алгеброй множеств) упомянутая оценка превращается в равенство, связывающее искомое и вспомогательное множества притяжения; для последнего указано достаточно простое представление. Обсуждается вариант применения (в оценочных целях) расширения Волмэна.

  4. Пусть M - гладкое многообразие с римановой метрикой g. Вопрос о группе изометрий риманова многообразия (M,g) является основной классической задачей римановой геометрии. Обозначим через G группу всех изометрий риманова многообразия (M,g) размерности n с римановой метрикой g. Структура группы G зависит от фиксированной римановой метрики g. Известно, что для «плохих» римановых метрик группа G может быть очень бедной. Известны примеры, когда группа G состоит из одного элемента. В общем случае известно, что группа G с компактно-открытой топологий является группой Ли. 

    В данной статье обсуждается вопрос о существовании изометрических отображений слоеного многообразия (M,F). Обозначим через GF группу всех изометрий слоеного риманова многообразия (M,F). Структура группы GF зависит не только от римановой метрики g, но и от данной слоеной структуры. Изучение структуры группы GF слоеного многообразия (M,F) является новой и интересной задачей. Впервые эта задача рассмотрена в работе А.Я. Нарманова и автора, где было показано, что группа GF с компактно-открытой топологией является топологической группой. В работе доказывается, что группа изометрий слоеного евклидова пространства является подгруппой группы изометрий евклидова пространства (то есть GFG), если слоение порождено поверхностями уровня гладкой функции, которая не является метрической.

  5. Рассматривается задача о соблюдении ограничений асимптотического характера (ОАХ) и ее расширение в классе ультрафильтров (у/ф) широко понимаемого измеримого пространства. Исследуется представление множества допустимых обобщенных элементов в виде множества притяжения (МП), отвечающего заданной системе ОАХ. В частности, исследуется вопрос о непустоте данного МП при весьма общих предположениях относительно измеримой структуры, на которой определяются соответствующие у/ф. Упомянутая структура задается $\pi$-системой с «нулем» и «единицей» ($\pi$-система есть непустое семейство множеств, замкнутое относительно конечных пересечений). Семейство у/ф оснащается при этом топологией волмэновского типа.

  6. Болсинов А.В., Борисов А.В., Мамаев И.С.
    Численные процедуры нахождения топологических инвариантов, с. 133-140

    В работе предложен общий топологический подход к исследованию устойчивости периодических решений интегрируемых динамических систем с двумя степенями свободы. Развиваемые методы проиллюстрированы на примерах нескольких интегрируемых задач, связанных с классическими уравнениями Эйлера—Пуассона, движением твердого тела в жидкости, а также динамикой газообразных расширяющихся эллипсоидов. Данные топологические методы позволяют также отыскивать невырожденные периодические решения интегрируемых систем, что является особенно актуальным в тех случаях, когда общее решение, например, при помощи разделения переменных неизвестно.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref