Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'первые интегралы':
Найдено статей: 11
  1. В статье рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с точечным вихрем, в идеальной жидкости. В отличие от предыдущих работ в данном случае циркуляция жидкости вокруг цилиндра предполагается равной нулю. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Используя автономный интеграл, проведена редукция системы на одну степень свободы в ранее не рассматриваемом случае нулевой циркуляции. Показано, что в отличие от случая циркуляционного обтекания в отсутствие точечных вихрей, в котором движение цилиндра будет происходить в ограниченной горизонтальной полосе, при наличии вихрей и циркуляции, равной нулю, вертикальная координата цилиндра неограниченно убывает. Дальнейшее внимание в работе сконцентрировано на численном исследовании динамики системы, которая при нулевой циркуляции обладает некомпактными траекториями. Построены различные виды функций рассеяния вихря на цилиндре. Вид этих функций свидетельствует о хаотическом характере рассеяния и, следовательно, об отсутствии дополнительного аналитического интеграла.

  2. В работе рассмотрена задача о движении в поле силы тяжести твердого тела, обладающего формой кругового цилиндра, взаимодействующего с N точечными вихрями, в идеальной жидкости. В общем случае циркуляция жидкости вокруг цилиндра предполагается отличной от нуля. Уравнения движения системы представлены в гамильтоновой форме. Указаны первые интегралы системы - горизонтальная и вертикальная компоненты импульса, - последний из которых, очевидно, неавтономный. Основное внимание сконцентрировано на исследовании конфигурации, аналогичной задаче Фёппля: цилиндр движется в поле тяжести в сопровождении вихревой пары (N=2). В этом случае циркуляция вокруг цилиндра равна нулю, а уравнения движения рассматриваются на некотором инвариантном многообразии. Показано, что, в отличие от конфигурации Фёппля, в поле силы тяжести относительное равновесие вихрей невозможно. Рассмотрена ограниченная задача: цилиндр предполагается достаточно тяжелым, вследствие чего вихри не оказывают влияния на его падение. Как полная, так и ограниченная задача исследована численно, в результате отмечено качественное сходство поведения решений: в большинстве случаев взаимодействие вихревой пары и цилиндра носит характер рассеяния.

  3. В работе исследуется динамика диска, катящегося по абсолютно шероховатой плоскости. Доказано, что уравнения движения обладают инвариантной мерой с непрерывной плотностью только в двух случаях: при динамически симметричном диске и диске со специальным распределением масс. В первом случае уравнения движения обладают двумя дополнительными интегралами и являются интегрируемыми в квадратурах по теореме Эйлера-Якоби. Во втором случае с помощью отображения Пуанкаре показано отсутствие дополнительных интегралов. В обоих случаях для любой области фазового пространства, переносимой потоком системы, ее объем, вычисленный с помощью плотности инвариантной меры, сохраняется. В неголономной механике известны как системы, допускающие инвариантную меру, так и системы, у которых она отсутствует.

  4. Предлагается алгоритм получения решения уравнений в частных производных с правой частью, заданной на сетке $\{ (x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}\},$ $(\mu=1,2,\ldots,N)\colon f_{\mu}=f((x_{1})_{\mu}, (x_{2})_{\mu}, \ldots, (x_{n})_{\mu}).$ Здесь $n$ — число независимых переменных в исходном уравнении в частных производных, $N$ — число строк в сетке для правой части, $f=f( x_{1}, x_{2}, \ldots, x_{n})$ — правая часть исходного уравнения. Алгоритм реализует редукцию исходного уравнения к системе обыкновенных дифференциальных уравнений (системе ОДУ) с начальными условиями в каждой точке сетки и включает следующую последовательность действий. Ищется решение исходного уравнения, зависящее от одной независимой переменной. Исходному уравнению ставится в соответствие некоторая система соотношений, содержащая произвольные функции и включающая уравнение в частных производных первого порядка. Для уравнения первого порядка выписывается расширенная система уравнений характеристик. Присоединяя к ней остальные соотношения, содержащие произвольные функции, и требуя, чтобы эти соотношения были первыми интегралами расширенной системы уравнений характеристик, приходим к искомой системе ОДУ, завершая редукцию. Предлагаемый алгоритм позволяет в каждой точке сетки находить решение исходного уравнения в частных производных, удовлетворяющее заданным начальным и краевым условиям. Алгоритм применяется для получения решений уравнения Пуассона и уравнения нестационарной осесимметричной фильтрации в точках сетки, на которой заданы правые части соответствующих уравнений.

  5. В данной работе получена модель, описывающая движение точечных вихрей в идеальной несжимаемой жидкости на конечном плоском цилиндре. Подробно рассмотрен случай двух вихрей. Показано, что уравнения движения вихрей могут быть представлены в гамильтоновой форме и обладают дополнительным первым интегралом. Предложена процедура редукции на фиксированный уровень первого интеграла. Для полученной редуцированной системы построены фазовые портреты, указаны неподвижные точки и особенности системы.

  6. В данной работе рассматриваются системы материальных точек в евклидовом пространстве, взаимодействующих как друг с другом, так и с внешним полем. В частности, рассматриваются системы частиц, взаимодействие между которыми описывается однородным потенциалом степени однородности α=-2. Для этих систем существует дополнительная скрытая симметрия, которой соответствует первый интеграл движения, называемый нами интегралом Якоби. Данный интеграл указывался ранее в различных работах, начиная с Якоби, однако мы приводим его в более общем виде.

  7. Неголономные механические системы возникают во многих задачах, имеющих практическое значение. Известной моделью в неголономной механике являются сани Чаплыгина. Сани Чаплыгина представляют собой твердое тело, опирающееся на поверхность острым невесомым колесом. Острый край колеса препятствует скольжению в направлении, перпендикулярном его плоскости. В данной работе рассмотрены сани Чаплыгина с изменяющимся со временем распределением масс, которое возникает за счет движения точки в поперечном относительно плоскости лезвия направлении. Получены уравнения движения, среди которых отделяется замкнутая система уравнений с периодическими по времени коэффициентами, описывающая эволюцию поступательной и угловой скорости саней. Показано, что если проекция центра масс всей системы на ось вдоль лезвия равна нулю, тогда поступательная скорость саней возрастает. При этом траектория точки контакта, как правило, является неограниченной.

  8. Рассматривается твердое тело-гиростат, движущееся по круговой кеплеровой околоземной орбите в плоскости геомагнитного экватора. Предполагается, что тело снабжено маховиком, обладает электростатическим зарядом и собственным магнитным моментом. Изучается вращательное движение гиростата относительно его центра масс под действием лоренцева и магнитного моментов. Показано, что при определенных предположениях о наличии некоторой динамической и электромагнитной симметрии гиростата решение задачи сводится к квадратурам путем построения четырех первых интегралов. Проведено исследование движения оси симметрии гиростата и дана его геометрическая интерпретация.

  9. В статье исследованы условия существования двух новых классов полиномиальных решений дифференциальных уравнений задачи о движении гиростата с неподвижной точкой в магнитном поле с учетом эффекта Барнетта–Лондона. Общая особенность структуры этих классов заключается в том, что функции, задающие инвариантные соотношения для компонент единичного вектора оси симметрии действующих силовых полей, являются либо рациональными функциями от первой компоненты указанного вектора, либо от вспомогательной переменной. Построены три новых частных решения рассматриваемых полиномиальных классов. Эти решения описываются функциями, полученными обращением гиперэллиптических интегралов. Доказано, что еще одно построенное решение исследуемых полиномиальных структур, для которого движение гиростата обладает свойством прецессионности, является частным случаем известного решения.

  10. В статье рассмотрено параболо-гиперболическое уравнение с сингулярным коэффициентом и спектральным параметром в области, состоящей из характеристического треугольника и полуполосы. Сформулирована задача с нелокальным условием, связывающим значения искомой функции в точках двух граничных характеристик и линии изменения типа уравнения с помощью двух операторов, один из которых зависит от коэффициента сингулярности, а другой — от спектрального параметра. Поставленная задача исследована сведением ее к системе уравнений относительно следа искомой функции и еe производной по $x$ на линии изменения типа уравнения. Единственность решения доказана с использованием метода интегралов энергии, при этом использованы интегральные представления гамма-функции Эйлера и функции Бесселя первого рода. Существование решения задачи доказано методом интегральных уравнений, при этом поставленная задача эквивалентно сведена к интегральному уравнению Фредгольма второго рода, разрешимость которого следует из единственности решения задачи. Выявлены достаточные условия, которые обеспечивают однозначную разрешимость поставленной задачи.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref