Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'плотное множество':
Найдено статей: 10
  1. Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.

  2. Абдуллаев Б.И., Имомкулов С.А., Шарипов Р.А.
    Структура особых множеств некоторых классов субгармонических функций, с. 519-535

    В данной работе дается обзор результатов об устранимых особых множествах для классов $m$-субгармонических ($m-sh$) и сильно $m$-субгармонических ($sh_m$), а также $\alpha$-субгармонических функций, которые применяются для изучения особых множеств $sh_{m}$ функций. Для сильно $m$-субгармонических функций из класса $L_{loc}^{p}$, доказывается, что множество является устранимым особым множеством, если имеет нулевую $C_{q,s}$-емкость. Доказательство этого утверждения основано на том, что пространство основных функций, с носителем на множестве $D\backslash E$, плотно по $L_{q}^{s}$-норме в пространстве основных функций, определенных на множестве $D$. Аналогичные результаты в случае классических (суб)гармонических функций были изучены в работах Л. Карлесона, Е. Долженко, М. Бланшет, С. Гардинера, Ж. Риихентаус, В. Шапиро, А. Садуллаева и Ж. Ярметова, Б. Абдуллаева и С. Имомкулова.

  3. Рассмотрен класс почти периодических по Вейлю функций, для которых множество ε-почти периодов, определяемых с помощью псевдометрики Вейля, относительно плотно при всех ε > 0: Для этого класса функций при некоторых дополнительных ограничениях доказано существование почти периодических сечений многозначных почти периодических отображений.

  4. В работе рассматривается пространство Стоуна булевой алгебры подмножеств одного счетного частично упорядоченного множества. Главной особенностью этого множества является наличие бесконечного числа непосредственных последователей у каждого его элемента. Отсюда следует, что каждый фиксированный ультрафильтр данного пространства Стоуна является неизолированной точкой, а подмножество свободных ультрафильтров всюду плотно. В работе дана классификация точек пространства, доказано, что есть свободные ультрафильтры, которые не являются пределами последовательностей фиксированных ультрафильтров, а также свободные ультрафильтры, определяемые цепями частично упорядоченного множества. Рассмотрены кардинальные инварианты подпространства свободных ультрафильтров. Доказано, что это подпространство имеет счетное число Суслина, но не сепарабельно.

     

  5. Атамуратов А.А., Расулов К.К.
    О теореме Шимоды, с. 17-31

    Настоящая работа посвящена теореме Шимоды о голоморфности функции $f(z,w)$, которая является голоморфной по $w\in V$ при фиксированном $z\in U$ и голоморфна по $z\in U$ при фиксированном $w\in E$, где $E\subset V$ - счетное множество, по крайней мере, с одной предельной точкой в $V$. Шимода доказывает, что в этом случае $f(z,w)$ голоморфно в $U\times V$, за исключением нигде не плотного замкнутого подмножества $U\times V.$ Рассматривается обратная задача и доказывается, что для любого заранее заданного нигде не плотного замкнутого подмножества $S\subset U$ существует голоморфная функция, удовлетворяющая теореме Шимоды на $U\times V\subset {\mathbb C}^{2}$, не голоморфная на $S\times V$. Кроме того, исследованы дополнительные условия, которые влекут за собой пустые множества особенностей в теореме Шимоды. Доказывается обобщение в случае, когда функция имеет переменный радиус голоморфности по одному из направлений.

  6. Грызлов А.А., Головастов Р.А., Бастрыков Е.С.
    Произведения пространств и сходимость последовательностей, с. 563-570

    По теореме Хьюитта–Марчевского–Пондишери тихоновское произведение $2^\omega$ сепарабельных пространств сепарабельно. Мы продолжаем исследовать проблему существования в тихоновском произведении $\prod\limits_{\alpha\in 2^\omega}X_\alpha$ сепарабельных пространств плотного счетного подмножества, не содержащего нетривиальных сходящихся последовательностей. Мы говорим, что последовательность $\lambda=\{x_n\colon n\in\omega\}$ является простой, если для каждого $x_n\in\lambda$ множество $\{n'\in\omega\colon x_{n'}=x_n\}$ конечно. Мы доказываем, что в произведении $\{Z_\alpha\colon\alpha\in 2^\omega\}$ сепарабельных пространств, где всякое $Z_\alpha$ $(\alpha\in\omega)$ содержит простую несходящуюся последовательность, есть счетное плотное множество $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, которое не содержит нетривиальных сходящихся в $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ последовательностей.

  7. Пусть $(U,\rho )$ - полное метрическое пространство, ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, и ${\mathcal R} ({\mathbb R},U)$ - пространства (сильно) измеримых функций $f:{\mathbb R}\to U$, преобразования Бохнера ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ которых являются рекуррентными функциями со значениями в метрических пространствах $L^p([-l,l],U)$ и $L^1([-l,l], (U,\rho ^{ \prime }))$, где $l>0$ и $(U,\rho^{ \prime })$ - полное метрическое пространство с метрикой $\rho ^{ \prime }(x,y)=\min\{ 1, \rho (x,y)\} ,$ $x, y\in U.$ Аналогично определяются пространства ${\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ и ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ функций (многозначных отображений) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ со значениями в полном метрическом пространстве $({\mathrm {cl}}\,_{ b}\, U, {\mathrm {dist}})$ непустых замкнутых ограниченных подмножеств метрического пространства $(U,\rho )$ с метрикой Хаусдорфа ${\mathrm {dist}}$ (при определении многозначных отображений $F\in {\mathcal R} ({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ рассматривается также метрика ${\mathrm {dist}} ^{ \prime }(X,Y)=\min\{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$). Доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ (соответственно $f\in {\mathcal R}^p ({\mathbb R},U)$) многозначных отображений $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (соответственно $F\in {\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$), для которых множества почти периодов подчинены множествам почти периодов многозначных отображений $F$. Для функций $g\in {\mathcal R} ({\mathbb R},U)$ приведены условия существования сечений $f\in {\mathcal R} ({\mathbb R},U)$ и $f\in {\mathcal R}^p ({\mathbb R},U),$ для которых $\rho (f(t),g(t))=\rho (g(t),F(t))$ при п.в. $t\in {\mathbb R}$. В предположении, что для любого $\varepsilon >0$ существует относительно плотное множество общих $\varepsilon $-почти периодов функции $g$ и многозначного отображения $F$, также доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ таких, что $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ при п.в. $t\in {\mathbb R}$, где $\eta :[0,+\infty ) \to [0,+\infty )$ - произвольная неубывающая функция, для которой $\eta (0) =0$ и $\eta (\xi )>0$ при всех $\xi >0$, при этом $f\in {\mathcal R}^p ({\mathbb R},U)$ в случае $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ При доказательстве используется равномерная аппроксимация функций $f\in {\mathcal R} ({\mathbb R},U)$ элементарными функциями из пространства ${\mathcal R} ({\mathbb R},U)$ множества почти периодов которых подчинены множествам почти периодов функций $f$.

     

  8. Рассматриваются всюду плотные подмножества произведений топологических пространств. Доказано, что в произведении $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ где $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ сепарабельных пространств существуют счетные всюду плотные множества такие, что всякие счетные их подмножества имеют проекции на грани, обладающие дополнительными свойствами. Это позволяет доказать ряд фактов о всюду плотных множествах, в частности отсутствие сходящихся последовательностей, оценивать характер замкнутых подмножеств произведений.

  9. Рассматривается стационарная управляемая система в конечномерном эвклидовом пространстве и на конечном промежутке времени. Изучается задача о сближении управляемой системы с компактным целевым множеством на заданном промежутке времени. Один из подходов к решению рассматриваемой задачи о сближении основан на выделении в пространстве позиций множества разрешимости, т.е. множества всех позиций системы, из которых, как из начальных, разрешима задача о сближении. Конструирование множества разрешимости - самостоятельная сложная и трудоемкая задача, которую удается точно решить лишь в редких случаях. В настоящей работе рассматриваются вопросы приближенного конструирования множества разрешимости в задаче о сближении нелинейной стационарной управляемой системы. Эта задача, как известно, тесно сопряжена с задачей конструирования интегральных воронок и трубок траекторий управляемых систем. Интегральные воронки управляемых систем можно приближенно конструировать по (временным) шагам как наборы соответствующих множеств достижимости, поэтому одним из основных элементов разрешающей конструкции в настоящей работе являются множества достижимости. В работе предлагается схема приближенного вычисления множества разрешимости задачи о сближении управляемой стационарной системы на конечном промежутке времени. В основе этой схемы лежит сведение к приближенному вычислению множеств разрешимости конечного числа более простых задач - задач о сближении с целевым множеством в фиксированные моменты времени из заданного временного промежутка. При этом моменты времени должны выбираться достаточно плотно в упомянутом промежутке времени. В работе проведено математическое моделирование задачи о сближении механической системы «Трансляционный осциллятор с ротационным актуатором». Представлено графическое сопровождение решения задачи.

  10. Пусть $V$ — сепарабельное рефлексивное банахово пространство, непрерывно вложенное в гильбертово пространство $H$ и плотное в нем; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ — заданное множество управлений; $A\colon X\to X^*$ — заданный вольтерров оператор, радиально непрерывный, мотонный и коэрцитивный (вообще говоря, нелинейный). Для задачи Коши, связанной с управляемым эволюционным уравнением вида \[x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{ x\in X\colon x^\prime\in X^*\},\] где $u\in U$ — управление, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ — вольтерров оператор ($W\subset\mathbf{C}(0,T;H)$), доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее для случая линейного оператора $A$ и $V=H=V^*$. Отдельно рассматриваются случаи компактного вложения пространств, усиления условия монотонности и совпадения тройки пространств $V=H=H^*$. В последних двух случаях доказывается также единственность решения. В первом случае применяется теорема Шаудера, в остальных — технология продолжения решения по времени (то есть продолжения вдоль вольтерровой цепочки). Приводятся конкретные примеры задания оператора $A$.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref