Все выпуски
- 2025 Том 35
- 2024 Том 34
- 2023 Том 33
- 2022 Том 32
- 2021 Том 31
- 2020 Том 30
- 2019 Том 29
- 2018 Том 28
- 2017 Том 27
- 2016 Том 26
- 2015 Том 25
- 2014
- 2013
- 2012
- 2011
- 2010
- 2009
- 2008
-
Пространство правильных функций и дифференциальное уравнение с обобщенными функциями в коэффициентах, с. 3-18Рассматриваются свойства пространств правильных функций, то есть функций, определенных на открытом (конечном, полубесконечном, бесконечном) промежутке, имеющих в каждой точке конечные односторонние пределы, а также плотные множества в этих пространствах. Задача Коши для скалярного линейного дифференциального уравнения с коэффициентами-производными правильных функций «погружается» в пространство обобщенных функций Коломбо. Для коэффициентов-производных ступенчатых функций в явном виде находится решение R(φμ,t) задачи Коши в представителях, предел которого при μ→+0 объявляется решением исходной задачи. Так появляется оператор T, который ставит в соответствие исходной задаче ее решение в виде правильной функции, определенный сначала лишь на плотном множестве. С помощью известной топологической теоремы о продолжении по непрерывности T продолжается до оператора T, определенного на всем пространстве правильных функций. Для неоднородной задачи Коши предложено явное представление решения. Приведен ряд иллюстрирующих примеров.
-
В данной работе дается обзор результатов об устранимых особых множествах для классов $m$-субгармонических ($m-sh$) и сильно $m$-субгармонических ($sh_m$), а также $\alpha$-субгармонических функций, которые применяются для изучения особых множеств $sh_{m}$ функций. Для сильно $m$-субгармонических функций из класса $L_{loc}^{p}$, доказывается, что множество является устранимым особым множеством, если имеет нулевую $C_{q,s}$-емкость. Доказательство этого утверждения основано на том, что пространство основных функций, с носителем на множестве $D\backslash E$, плотно по $L_{q}^{s}$-норме в пространстве основных функций, определенных на множестве $D$. Аналогичные результаты в случае классических (суб)гармонических функций были изучены в работах Л. Карлесона, Е. Долженко, М. Бланшет, С. Гардинера, Ж. Риихентаус, В. Шапиро, А. Садуллаева и Ж. Ярметова, Б. Абдуллаева и С. Имомкулова.
-
Рассмотрен класс почти периодических по Вейлю функций, для которых множество ε-почти периодов, определяемых с помощью псевдометрики Вейля, относительно плотно при всех ε > 0: Для этого класса функций при некоторых дополнительных ограничениях доказано существование почти периодических сечений многозначных почти периодических отображений.
-
В работе рассматривается пространство Стоуна булевой алгебры подмножеств одного счетного частично упорядоченного множества. Главной особенностью этого множества является наличие бесконечного числа непосредственных последователей у каждого его элемента. Отсюда следует, что каждый фиксированный ультрафильтр данного пространства Стоуна является неизолированной точкой, а подмножество свободных ультрафильтров всюду плотно. В работе дана классификация точек пространства, доказано, что есть свободные ультрафильтры, которые не являются пределами последовательностей фиксированных ультрафильтров, а также свободные ультрафильтры, определяемые цепями частично упорядоченного множества. Рассмотрены кардинальные инварианты подпространства свободных ультрафильтров. Доказано, что это подпространство имеет счетное число Суслина, но не сепарабельно.
-
О теореме Шимоды, с. 17-31Настоящая работа посвящена теореме Шимоды о голоморфности функции $f(z,w)$, которая является голоморфной по $w\in V$ при фиксированном $z\in U$ и голоморфна по $z\in U$ при фиксированном $w\in E$, где $E\subset V$ - счетное множество, по крайней мере, с одной предельной точкой в $V$. Шимода доказывает, что в этом случае $f(z,w)$ голоморфно в $U\times V$, за исключением нигде не плотного замкнутого подмножества $U\times V.$ Рассматривается обратная задача и доказывается, что для любого заранее заданного нигде не плотного замкнутого подмножества $S\subset U$ существует голоморфная функция, удовлетворяющая теореме Шимоды на $U\times V\subset {\mathbb C}^{2}$, не голоморфная на $S\times V$. Кроме того, исследованы дополнительные условия, которые влекут за собой пустые множества особенностей в теореме Шимоды. Доказывается обобщение в случае, когда функция имеет переменный радиус голоморфности по одному из направлений.
-
По теореме Хьюитта–Марчевского–Пондишери тихоновское произведение $2^\omega$ сепарабельных пространств сепарабельно. Мы продолжаем исследовать проблему существования в тихоновском произведении $\prod\limits_{\alpha\in 2^\omega}X_\alpha$ сепарабельных пространств плотного счетного подмножества, не содержащего нетривиальных сходящихся последовательностей. Мы говорим, что последовательность $\lambda=\{x_n\colon n\in\omega\}$ является простой, если для каждого $x_n\in\lambda$ множество $\{n'\in\omega\colon x_{n'}=x_n\}$ конечно. Мы доказываем, что в произведении $\{Z_\alpha\colon\alpha\in 2^\omega\}$ сепарабельных пространств, где всякое $Z_\alpha$ $(\alpha\in\omega)$ содержит простую несходящуюся последовательность, есть счетное плотное множество $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, которое не содержит нетривиальных сходящихся в $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ последовательностей.
-
Пусть $(U,\rho )$ - полное метрическое пространство, ${\mathcal R}^p({\mathbb R},U),$ $p\geqslant 1$, и ${\mathcal R} ({\mathbb R},U)$ - пространства (сильно) измеримых функций $f:{\mathbb R}\to U$, преобразования Бохнера ${\mathbb R}\ni t\mapsto f^B_l(t;\cdot )=f(t+\cdot )$ которых являются рекуррентными функциями со значениями в метрических пространствах $L^p([-l,l],U)$ и $L^1([-l,l], (U,\rho ^{ \prime }))$, где $l>0$ и $(U,\rho^{ \prime })$ - полное метрическое пространство с метрикой $\rho ^{ \prime }(x,y)=\min\{ 1, \rho (x,y)\} ,$ $x, y\in U.$ Аналогично определяются пространства ${\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ и ${\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ функций (многозначных отображений) $F:{\mathbb R}\to {\mathrm {cl}}\,_{ b}\, U$ со значениями в полном метрическом пространстве $({\mathrm {cl}}\,_{ b}\, U, {\mathrm {dist}})$ непустых замкнутых ограниченных подмножеств метрического пространства $(U,\rho )$ с метрикой Хаусдорфа ${\mathrm {dist}}$ (при определении многозначных отображений $F\in {\mathcal R} ({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$ рассматривается также метрика ${\mathrm {dist}} ^{ \prime }(X,Y)=\min\{ 1,{\mathrm {dist}}(X,Y)\} ,$ $X, Y\in {\mathrm {cl}}\,_{ b}\, U$). Доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ (соответственно $f\in {\mathcal R}^p ({\mathbb R},U)$) многозначных отображений $F\in {\mathcal R} ({\mathbb R},{\mathrm {cl}}\,_{ b}\, U)$ (соответственно $F\in {\mathcal R}^p({\mathbb R}, {\mathrm {cl}}\,_{ b}\, U)$), для которых множества почти периодов подчинены множествам почти периодов многозначных отображений $F$. Для функций $g\in {\mathcal R} ({\mathbb R},U)$ приведены условия существования сечений $f\in {\mathcal R} ({\mathbb R},U)$ и $f\in {\mathcal R}^p ({\mathbb R},U),$ для которых $\rho (f(t),g(t))=\rho (g(t),F(t))$ при п.в. $t\in {\mathbb R}$. В предположении, что для любого $\varepsilon >0$ существует относительно плотное множество общих $\varepsilon $-почти периодов функции $g$ и многозначного отображения $F$, также доказано существование сечений $f\in {\mathcal R} ({\mathbb R},U)$ таких, что $\rho (f(t),g(t))\leqslant \rho (g(t),F(t))+\eta (\rho (g(t),F(t)))$ при п.в. $t\in {\mathbb R}$, где $\eta :[0,+\infty ) \to [0,+\infty )$ - произвольная неубывающая функция, для которой $\eta (0) =0$ и $\eta (\xi )>0$ при всех $\xi >0$, при этом $f\in {\mathcal R}^p ({\mathbb R},U)$ в случае $F\in {\mathcal R}^p({\mathbb R},{\mathrm {cl}}\,_{ b}\, U).$ При доказательстве используется равномерная аппроксимация функций $f\in {\mathcal R} ({\mathbb R},U)$ элементарными функциями из пространства ${\mathcal R} ({\mathbb R},U)$ множества почти периодов которых подчинены множествам почти периодов функций $f$.
-
О проекциях произведений пространств, с. 409-413Рассматриваются всюду плотные подмножества произведений топологических пространств. Доказано, что в произведении $Z^c=\prod\limits_{\alpha\in 2^\omega} Z_{\alpha},$ где $Z_\alpha=Z$ $(\alpha\in 2^\omega),$ сепарабельных пространств существуют счетные всюду плотные множества такие, что всякие счетные их подмножества имеют проекции на грани, обладающие дополнительными свойствами. Это позволяет доказать ряд фактов о всюду плотных множествах, в частности отсутствие сходящихся последовательностей, оценивать характер замкнутых подмножеств произведений.
-
Рассматривается стационарная управляемая система в конечномерном эвклидовом пространстве и на конечном промежутке времени. Изучается задача о сближении управляемой системы с компактным целевым множеством на заданном промежутке времени. Один из подходов к решению рассматриваемой задачи о сближении основан на выделении в пространстве позиций множества разрешимости, т.е. множества всех позиций системы, из которых, как из начальных, разрешима задача о сближении. Конструирование множества разрешимости - самостоятельная сложная и трудоемкая задача, которую удается точно решить лишь в редких случаях. В настоящей работе рассматриваются вопросы приближенного конструирования множества разрешимости в задаче о сближении нелинейной стационарной управляемой системы. Эта задача, как известно, тесно сопряжена с задачей конструирования интегральных воронок и трубок траекторий управляемых систем. Интегральные воронки управляемых систем можно приближенно конструировать по (временным) шагам как наборы соответствующих множеств достижимости, поэтому одним из основных элементов разрешающей конструкции в настоящей работе являются множества достижимости. В работе предлагается схема приближенного вычисления множества разрешимости задачи о сближении управляемой стационарной системы на конечном промежутке времени. В основе этой схемы лежит сведение к приближенному вычислению множеств разрешимости конечного числа более простых задач - задач о сближении с целевым множеством в фиксированные моменты времени из заданного временного промежутка. При этом моменты времени должны выбираться достаточно плотно в упомянутом промежутке времени. В работе проведено математическое моделирование задачи о сближении механической системы «Трансляционный осциллятор с ротационным актуатором». Представлено графическое сопровождение решения задачи.
-
О тотально глобальной разрешимости эволюционного уравнения с монотонным нелинейным оператором, с. 130-149Пусть $V$ — сепарабельное рефлексивное банахово пространство, непрерывно вложенное в гильбертово пространство $H$ и плотное в нем; $X=L_p(0,T;V)\cap L_{p_0}(0,T;H)$; $U$ — заданное множество управлений; $A\colon X\to X^*$ — заданный вольтерров оператор, радиально непрерывный, мотонный и коэрцитивный (вообще говоря, нелинейный). Для задачи Коши, связанной с управляемым эволюционным уравнением вида \[x^\prime+Ax=f[u](x),\quad x(0)=a\in H;\quad x\in W=\{ x\in X\colon x^\prime\in X^*\},\] где $u\in U$ — управление, $f[u]\colon \mathbf{C}(0,T;H)\to X^*$ — вольтерров оператор ($W\subset\mathbf{C}(0,T;H)$), доказана тотально (по множеству допустимых управлений) глобальная разрешимость при условии глобальной разрешимости некоторого функционально-интегрального неравенства в пространстве $\mathbb{R}$. Во многих частных случаях указанное неравенство может быть конкретизировано как задача Коши для обыкновенного дифференциального уравнения. Фактически, развивается аналогичный результат, доказанный автором ранее для случая линейного оператора $A$ и $V=H=V^*$. Отдельно рассматриваются случаи компактного вложения пространств, усиления условия монотонности и совпадения тройки пространств $V=H=H^*$. В последних двух случаях доказывается также единственность решения. В первом случае применяется теорема Шаудера, в остальных — технология продолжения решения по времени (то есть продолжения вдоль вольтерровой цепочки). Приводятся конкретные примеры задания оператора $A$.
Журнал индексируется в Web of Science (Emerging Sources Citation Index)
Журнал входит в базы данных zbMATH, MathSciNet
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в перечень ВАК.
Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.