Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'полиномиальные решения':
Найдено статей: 8
  1. Изучаются свойства дискретной вариационной задачи динамической аппроксимации в комплексном евклидовом (L + 1)-мерном пространстве E. Она обобщает известные задачи среднеквадратической полиномиальной аппроксимации функций, заданных своими отсчетами в конечном интервале. В рассматриваемой задаче аппроксимация последовательности y = {yi}L0 отсчетов функции y(t) ∈ L2[0, T], T = Lh на сетке Ih осуществляется решениями однородных линейных дифференциальных или разностных уравнений заданного порядка n с постоянными, но, возможно, неизвестными коэффициентами. Тем самым показано, что в последнем случае задача аппроксимации включает в себя и задачу идентификации. Анализ ее особенностей - основная тема статьи. Ставится задача нахождения вектора коэффициентов разностного уравнения Σn0 ŷi+k αi = 0, где k = 0,Ln. Оптимизируются коэффициенты и начальные условия переходного процесса y этого уравнения. Цель оптимизации - наилучшая аппроксимация исследуемого динамического процесса yE. Критерий аппроксимации  минимум величины ||yŷ||2E. Показано, что изучаемая вариационная задача сводится к задачам проектирования в E вектора y на ядра разностных операторов с неизвестными коэффициентами αωSEn+1. Здесь α - направление, S - сфера или гиперплоскость. Показана связь изучаемой задачи с задачами дискретизации и идентифицируемости. Тогда координаты вектора yE есть точное решение дифференциального уравнения на сетке Ih и y = ŷ. Дано сравнение изучаемой задачи вариационной идентификации с алгебраическими методами идентификации. Показано, что ортогональные дополнения к ядрам разностных операторов всегда имеют теплицев базис. Это приводит к быстрым проекционным алгоритмам вычислений. Показано, что задача нахождения оптимального вектора α сводится к задаче безусловной минимизации функционала идентификации, зависящего от направления в En+1. Предложена итерационная процедура его минимизации на сфере с широкой областью и высокой скоростью сходимости. Изучаемую вариационную задачу можно применять при математическом моделировании в управлении и научных исследованиях. При этом на конечных интервалах может использоваться, в частности, возможность кусочно-линейной динамической аппроксимации сложных динамических процессов разностными и дифференциальными уравнениями указанного типа.

     

  2. Рассматривается новое конструктивное понимание логических формул, согласованное с интуицией и с традиционными средствами конструктивного логического вывода. Новое понимание логически проще традиционной реализуемости (в смысле кванторной глубины), но является также естественным с точки зрения алгоритмического решения задач. Это понимание, кроме свидетельства (реализации, подтверждения) понимаемой формулы, привлекает понятия теста (противодействия, препятствия) этой реализации на данной формуле. Для понимания формулы $A$ рассматриваются предложения вида $a:A:b.$ Это предложение означает, что объект $a$ (выдвигаемый в подтверждение формулы $A$) выигрывает у объекта $b$ (который противодействует выполнению формулы $A$) формулу $A$ в процессе осуществления специальной процедуры сопоставления этих объектов друг с другом и с данной формулой. Данная процедура может считаться некоторой процедурой арбитража для вынесения необходимого решения. Базис процедуры арбитража для атомарных формул задается интерпретацией языка. Процедура для сложных предложений задается специальными правилами определения смысла логических связок. При наиболее естественном определении процедура арбитража имеет полиномиальную временную сложность. Формула $A$ считается истинной в новом смысле этого слова, если имеется подтверждение, выигрывающее ее у всех возможных противодействий. Рассматривается логический язык без отрицаний. Доказана теорема о корректности в новом смысле традиционных интуиционистских аксиом и правил вывода. При этом рассматривается секвенциальное логическое исчисление, ориентированное на обратный метод поиска вывода.

  3. В статье рассмотрена редукция уравнений Кирхгофа-Пуассона задачи о движении твердого тела под действием потенциальных и гироскопических сил и уравнений задачи о движении твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона. Получены аналоги уравнений Н. Ковалевского в указанных задачах. Построены два новых частных решения полиномиального класса Стеклова-Ковалевского-Горячева редуцированных дифференциальных уравнений рассматриваемых задач. Полиномиальное решение задачи о движении гиростата под действием потенциальных и гироскопических сил характеризуется свойством: квадраты второй и третьей компонент вектора угловой скорости представлены квадратными многочленами от первой компоненты этого вектора, которая является эллиптической функцией времени. Полиномиальное решение уравнений движения твердого тела в магнитном поле с учетом эффекта Барнетта-Лондона характеризуется тем, что квадрат второй компоненты вектора угловой скорости - многочлен второго порядка, а квадрат третьей компоненты - многочлен четвертого порядка от первой компоненты этого вектора, которая находится в результате обращения гиперэллиптического интеграла.

  4. В статье рассмотрены методы для обнаружения особых точек на аффинной гиперповерхности или подтверждения гладкости этой гиперповерхности. Наш подход основан на построении касательных прямых к данной гиперповерхности. Существование хотя бы одной особой точки накладывает ограничение на алгебраическое уравнение, определяющее совокупность касательных прямых, проходящих через выделенную точку в пространстве. Это уравнение основано на формуле для дискриминанта многочлена от одной переменной. Для произвольно фиксированной степени гиперповерхности нами предложен детерминированный алгоритм полиномиального времени для вычисления базиса в подпространстве соответствующих многочленов. Если линейная комбинация таких многочленов не обращается в нуль на гиперповерхности, то гиперповерхность гладкая. Мы формулируем достаточное условие гладкости, проверяемое за полиномиальное время. Для некоторых гладких аффинных гиперповерхностей это условие выполнено. Этот набор включает графики кубических многочленов от нескольких переменных, а также другие примеры кубических гиперповерхностей. С другой стороны, это условие не выполняется для некоторых кубических гиперповерхностей высокой размерности. Это не мешает применению метода в низких размерностях. Также поиск особых точек важен для решения некоторых задач машинного зрения, в том числе для обнаружения угла у препятствия по последовательности кадров с одной камеры на движущемся транспортном средстве.

  5. В статье разработано приближенно-аналитическое решение задачи конформного отображения внутренних точек произвольного многоугольника на единичный круг. На предварительном этапе задача конформного отображения сформулирована в виде краевой задачи (задача Шварца). Последняя сведена к решению интегрального уравнения Фредгольма второго рода с ядром типа Коши относительно неизвестной комплексной функции плотности на границе области с последующим вычислением интеграла Коши. Разработанное приближенно-аналитическое решение основано на разложении ядра Коши в системе многочленов Лежандра первого и второго рода. Выполнена априорная и апостериорная оценки сходимости и точности заданного решения. Определены экспоненциальная сходимость решения в $L_2\left([0,1]\right)$ и полиномиальная в $C\left([0,1]\right)$. Для наглядного сравнения результативности разработанного решения приведены расчеты на тестовых примерах.

  6. В статье исследованы условия существования двух новых классов полиномиальных решений дифференциальных уравнений задачи о движении гиростата с неподвижной точкой в магнитном поле с учетом эффекта Барнетта–Лондона. Общая особенность структуры этих классов заключается в том, что функции, задающие инвариантные соотношения для компонент единичного вектора оси симметрии действующих силовых полей, являются либо рациональными функциями от первой компоненты указанного вектора, либо от вспомогательной переменной. Построены три новых частных решения рассматриваемых полиномиальных классов. Эти решения описываются функциями, полученными обращением гиперэллиптических интегралов. Доказано, что еще одно построенное решение исследуемых полиномиальных структур, для которого движение гиростата обладает свойством прецессионности, является частным случаем известного решения.

  7. В работе рассматривается проблематика снижения сложности $NP$-трудных задач с помощью использования близких задач, для которых оптимальное или приемлемое решение уже известно. Для задач многоагентной маршрутизации применяется методика, основанная на кластеризации сети, согласованной с маршрутами коммивояжера на каждом кластере и построения маршрутов, учитывающих ограничение временных окон доставки. Приводится математическая модель, которой соответствует блок псевдобулевой условной оптимизации с ограничениями в виде дизъюнктивных нормальных форм, допускающей полиномиальную разрешимость и блок временных ограничений. Результаты по выбору метаэвристик на основе близких задач используются в программе по доставке товаров многими агентами потребителям, расположенным в вершинах инфраструктурной дорожной сети региона.

  8. Рассматривается задача управления трёхмерной синхронной переключательной схемой с вертикально-горизонтально-фронтальной синхронизацией и однотипными круговыми переключателями. Даны условия разрешимости задачи в терминах порядка схемы и количества позиций круговых переключателей. Приводится явный вид решения в случае разрешимости задачи.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref