Текущий выпуск Выпуск 1, 2025 Том 35
Результыты поиска по 'приближенное решение':
Найдено статей: 55
  1. Изучается одна краевая задача для дифференциального уравнения с частными производными четвертого порядка с младшим членом в прямоугольной области. Для решения задачи получена априорная оценка решения, из которой следует единственность решения задачи. Для доказательства существования решения задачи применяется метод разделения переменных. Разрешимость задачи сводится к интегральному уравнению Фредгольма второго рода относительно искомой функции, которое решается методом последовательных приближений. Найдены достаточные условия, обеспечивающие абсолютную и равномерную сходимость ряда, представляющего решение задачи, и рядов, полученных из него дифференцированием четыре раза по x и два раза по t.

  2. В статье рассматриваются приближенные решения неантагонистических дифференциальных игр. Приближенное равновесие по Нэшу может быть построено по заданному решению вспомогательной стохастической игры с непрерывным временем. Мы рассматриваем случай, когда динамика вспомогательной игры задается марковской цепью с непрерывным временем. Для этой игры функция цены определяется решением системы обыкновенных дифференциальных включений. Таким образом, мы получаем конструкцию приближенного равновесия по Нэшу с выигрышами игроков, близкими к решениям системы обыкновенных дифференциальных включений. Также предложен способ построения марковской игры с непрерывным временем, аппроксимирующей исходную игру.

  3. В статье рассматривается задача устойчивой реконструкции неизвестного входа системы по результатам неточных измерений ее решения. Суть задачи состоит в следующем. Имеется система, описываемая распределенным уравнением второго порядка, решение которой зависит от входа, меняющегося со временем. Как вход, так и решение заранее не известны. В дискретные моменты времени измеряется решение уравнения. Результаты измерения неточны. Требуется построить алгоритм приближенного восстановления входа, обладающий свойствами динамичности и устойчивости. Свойство динамичности означает, что текущие значения приближений входа вычисляются в реальном времени (он-лайн). Свойство устойчивости — что приближения являются достаточно точными, при хорошей точности измерений. Задача относится к классу обратных задач. Представленный в статье алгоритм основан на конструкциях теории устойчивого динамического обращения в комбинации с методами некорректных задач и позиционного управления.

  4. Рассматривается задача с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в прямоугольной области. Исследуются вопросы существования и единственности классического решения рассматриваемой задачи, а также непрерывной зависимости решения от исходных данных. Предлагается новый подход к решению задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка на основе введения новых функций. Путем введения новых неизвестных функций задача сводится к эквивалентному семейству задач Коши для нагруженной системы дифференциальных уравнений с параметрами и интегральным соотношениям. Предложен алгоритм нахождения приближенного решения эквивалентной задачи и доказана его сходимость. Установлены условия однозначной разрешимости задачи с данными на характеристиках для нагруженной системы гиперболических уравнений второго порядка в терминах коэффициентов системы.

  5. Для класса динамических систем, включающего в себя уравнения колебаний упругой балки на упругом основании, автономные системы обыкновенных дифференциальных уравнений, системы гидродинамического типа и др., изложена процедура приближенного вычисления амплитуд периодических решений, бифурцирующих из точек покоя при наличии резонансов.

  6. Рассмотрена задача локальной параметрической идентифицируемости системы в случае, когда параметр принадлежит конечномерному семейству функций. Во введении даны основные определения и необходимые обозначения. В первой части работы получен критерий локальной идентифицируемости систем по наблюдениям точного решения. Во второй части рассмотрена задача локальной идентифицируемости по наблюдениям приближенного решения, полученного с помощью численной аппроксимации точного решения, а также получено достаточное условие локальной идентифицируемости системы в рамках рассмотренной задачи.

  7. Изучается вариационный подход к постановке и решению задачи приближения функций квазиполиномами  решениями однородных, автономных линейных разностных или дифференциальных уравнений.

  8. Работа посвящена построению приближенных решений краевых задач в прямоугольнике для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя, выступающих в качестве математических моделей движения влаги и солей в почвах с фрактальной организацией. Построены разностные схемы для дифференциальных задач. Методом энергетических неравенств выведены априорные оценки решений рассматриваемых задач в дифференциальной и разностной трактовках. Из полученных априорных оценок следуют единственность, устойчивость решения по начальным данным и правой части, а также сходимость решения разностной задачи к решению соответствующей дифференциальной задачи со скоростью, равной порядку погрешности аппроксимации. Построен алгоритм численного решения разностных схем, полученных при аппроксимации краевых задач для нагруженного модифицированного уравнения влагопереноса дробного порядка с оператором Бесселя. Проведены численные эксперименты, иллюстрирующие полученные в работе теоретические выкладки.

  9. Изучается начально-краевая задача для многомерного псевдопараболического уравнения с переменными коэффициентами и граничными условиями третьего рода. Многомерное псевдопараболическое уравнение сводится к интегро-дифференциальному уравнению с малым параметром. Показано, что при стремлении малого параметра к нулю решение полученной модифицированной задачи сходится к решению исходной задачи. Для приближенного решения полученной задачи строится локально-одномерная разностная схема А. А. Самарского. Методом энергетических неравенств получена априорная оценка, откуда следуют единственность, устойчивость и сходимость решения локально-одномерной разностной схемы к решению исходной дифференциальной задачи. Для двумерной задачи построен алгоритм численного решения начально-краевой задачи для псевдопараболического уравнения с условиями третьего рода.

  10. Для задачи оптимального управления системой обыкновенных дифференциальных уравнений с поточечным фазовым ограничением типа равенства и конечным числом функциональных ограничений типа равенства и неравенства формулируется устойчивый секвенциальный, или, другими словами, регуляризованный, принцип максимума Понтрягина в итерационной форме. Его главное отличие от классического принципа максимума Понтрягина заключается в том, что он, во-первых, формулируется в терминах минимизирующих последовательностей, во-вторых, имеет форму итерационного процесса в пространстве двойственных переменных и, наконец, в-третьих, устойчиво к ошибкам исходных данных оптимизационной задачи порождает в ней минимизирующее приближенное решение в смысле Дж. Варги, т.е. представляет собою регуляризирующий алгоритм. Доказательство регуляризованного принципа максимума Понтрягина в итерационной форме опирается на методы двойственной регуляризации и итеративной двойственной регуляризации.

Журнал индексируется в Web of Science (Emerging Sources Citation Index)

Журнал индексируется в Scopus

Журнал входит в базы данных zbMATH, MathSciNet

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал включен в перечень ВАК.

Электронная версия журнала на Общероссийском математическом портале Math-Net.Ru.

Журнал включен в Crossref